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3. INVESTIGATIONS INTO LOGICAL DEDUCTION 

SYNOPSIS 

The investigations that follow concern the domain of predicate logic 
(H.-A.” call it the ‘restricted predicate calculus’). It comprises the types of 
inference that are continually used in all parts of mathematics. What 
remains to be added to these are axioms and forms of inference that may be 
considered as being proper to the particular branches of mathematics, e.g., 
in elementary number theory the axioms of the natural numbers, of addition, 
multiplication, and exponentiation, as well as the inference of complete 
induction; in geometry the geometric axioms. 

In addition to classical logic I shall also deal with intuitionist logic as 
formalized, for example, by Heyting”. 

The present investigations into classical and intuitionist predicate logic 
fall essentially into two only loosely connected parts. 

1. My starting point was this: The formalization of logical deduction, 
especially as it has been developed by Frege, Russell, and Hilbert, is rather 
far removed from the forms of deduction used in practice in mathematical 
proofs. Considerable formal advantages are achieved in return. 

In contrast, I intended first to set up a formal system which comes as 
close as possible to actual reasoning. The result was a ‘calculus of natural 
deduction’ (‘NJ’ for intuitionist, ‘NK’ for classical predicate logic). This 
calculus then turned out to have certain special properties; in particular, 
the ‘law of the excluded middle’, which the intuitionists reject, occupies a 
special position. 

I shall develop the calculus of natural deduction in section I1 of this 
paper together with some remarks concerning it. 

2. A closer investigation of the specific properties of the natural calculus 
finally led me to a very general theorem which will be referred to below as 
the ‘ Haup tsatz’ . 
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The Hauptsatz” says that every purely logical proof can be reduced to 
a definite, though not unique, normal form. Perhaps we may express the 
essential properties of such a normal proof by saying: it is not roundabout. 
No concepts enter into the proof other than those contained in its final 
result, and their use was therefore essential to the achievement of that result. 

The Hauptsatz holds both for classical and for intuitionist predicate logic. 
In order to be able to enunciate and prove the Hauptsatz in a convenient 

form, I had to provide a logical calculus especially suited to the purpose. 
For this the natural calculus proved unsuitable. For, although it already 
contains the properties essential to the validity of the Hauptsatz, it does so 
only with respect to its intuitionist form, in view of the fact that the law of 
excluded middle, as pointed out earlier, occupies a special position in relation 
to these properties. 

In section 111 of this paper, therefore, I shall develop a new calculus of 
logical deduction possessing all the desired properties in both their intui- 
tionist and their classical forms (‘LJ’ for intuitionist, ‘LK’ for classical 
predicate logic). The Hauptsatz will then be enunciated and proved by 
means of that calculus. 

The Hauptsatz permits of a variety of applications. To illustrate this 
I shall develop a decision procedure (IV, 0 1) for intuitionist propositional 
logic in section IVY and shall in addition give a new proof of the consistency 
of classical arithmetic without complete induction (IV, 9 3). 

Sections 111 and IV may be read independently of section 11. 

3. Section I contains the terminology and notations used in this paper. 
In section V, I prove the equivalence of the logical calculi NJ, NK, and 

LJ, LK, developed in this paper, by means of a calculus modelled on the 
formalisms of Russell, Hilbert, and Heyting (and which may easily be 
compared with them). (‘LHJ’ for intuitionist, ‘LHK’ for classical predicate 
logic.) 

SECTION I. TERMINOLOGY AND NOTATIONS 

To the concepts ‘object’, ‘function’, ‘predicate’, ‘proposition’, ‘theorem’, 
‘axiom’, ‘proof‘, ‘inference’, etc., in logic and mathematics there correspond, 
in the formalization of these disciplines, certain symbols or combinations 
of symbols. We divide these into: 
1. Symbols. 
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2. Expressions, i.e., finite sequences of symbols. 
3. Figures, i.e., finite sets of symbols, with some ordering. 

as special cases of figures. 

following kind: 
1. Symbols. 

1.1. Constant symbols: 

Symbols count as special cases of expressions and figures, expressions 

In this paper we shall consider symbols, expressions, and figures of the 

These divide into constant symbols and variables. 

Symbols for dejnite objects: 1, 2, 3 ,  . . . 
Symbols for  dejinite functions: + , -, *. 

Symbols for definite propositions: V (‘the true proposition’), A (‘the false 

Symbols for dejinite predicates: = , <. 
Logical symbols:23 & ‘and’, v ‘or’, 3 ‘if. . . then’, 3 t ‘is equivalent to’, 

We shall also use the terms: conjunction symbol, disjunction symbol, 
implication symbol, equivalence symbol, negation symbol, universal quanti- 
fier, existential quantifier. 

Auxiliary symbols: ) , ( , + . 
1.2. Variables: 

Object variables. These we divide into free object variables: a, b, c, . . . , m 
and bound object variables: n, . . . , x, y ,  z. 

Propositional variables: A ,  B, C ,  . . .. 
An arbitrary number of variables will be assumed to be available; if the 

alphabet is insufficient, we adjoin numerical subscripts, e.g., a,, C, .  
1.3. German and Greek letters serve as ‘syntactic variables’, i.e., not as 
symbols of the logic formalized, but as variables of our deliberations about 
that logic. Their meanings are explained as they are used. 
2. Expressions. 
2.1. The concept of a propositional expression, called a ‘formula’ for short 
(defined inductively): 

(The concept of a formula is ordinarily used in a more general sense; 
the special case defined below might thus perhaps be described as a ‘purely 
logical formula’.) 
2.11. A symbol for a definite proposition (Le., the symbols V and A) is 
a formula. 

A propositional variable followed by a number (possibly zero) of free 
object variables is a formula, e.g., Abab. 

proposition’). 

‘not’, V ‘for all’, 3 ‘there is’. 
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The object variables are called the arguments of the propositional 

Formulae of the two kinds mentioned are also called elementary formulae. 

If and @ are formulae, then % & '$3, % v By % 3 @ are formulae. 
(We shall not introduce the symbol 3 c into our presentation; it is in 

fact superfluous, since 2 3 c III may be regarded as an abbreviation for 

2.13. A formula not containing the bound object variable F yields another 
formula, if we prefix either V F  or 3 ~ .  At the same time we may substitute F 
in a number of places for a free object variable occurring in the formula. 
2.14. Brackets (or parentheses) are to be used to show the structure of a 
formula unambiguously. Example of a formula: 

variables. 

2.12. If is a formula, then is also a formula. 

(a 2 @)& (B =i %). 

3x (((7 Abxa) v Bx) 3 (VZ ( A  & B)) )  

By special convention the number of brackets may be reduced, but (with 
one exception, vide 2.4) no use will be made of this, since we do not have 
to write down many formulae. 
2.2. The number of logical symbols occurring in a formula is called the 
degree of the formula. (Thus an elementary formula is of degree 0.) 

The logical symbol of a nonelementary formula that has been adjoined 
last in the construction of the formula according to 2.12 and 2.13, is called 
the terminal symbol of the formula. 

Formulae that may have arisen in the course of the construction of a 
formula according to 2.12 and 2.13, including the formula itself', are called 
subformulae. 

Example: the subformulae of A & Vx Bxa are A ,  Vx Bxa, A & Vx Bxa 
as well as all formulae of the form Baa, where a represents any free object 
variable (this variable may also be a, for example). The degree of 
A & Vx Bxa is 2, the terminal symbol is &. 
2.3. The concept of a sequent: 

the purpose of its introduction becomes clear.) 
(This concept will not be used until section 111, and it is only then that 

A sequent is an expression of the form 

where a1 , . . . , a,,, Bl , . . . , IIIV may represent any formula whatever. 
(The -+, like commas, is an auxiliary symbol and not a logical symbol.) 

. . . , %,, form the antecedent, and the formulae The formulae 
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Bl , . . . , Bv, the succedent of the sequent. Both expressions may be empty. 
2.4. The sequent l?I1 , . . . , %I -+ Bl , . . . , Bv has exactly the same informal 
meaning as the formula 

(a, &. . . & aJ D (B1 v . . . v 23,). 

(By a1 & 212 & 213 we mean (al & a,) & a3, likewise for v.) 
If the antecedent is empty, the sequent reduces to the formula 

If the succedent is empty, the sequent means the same as the formula 
1 (al & . . . & ZI) or (al & . . . & illp) 3 A. 

If both the antecedent and the succedent of the formula are empty, the 
sequent means the same as A, i.e., a false proposition. 

Conversely, to every formula there corresponds an equivalent sequent, 
e.g., the sequent whose antecedent is empty and whose succedent consists 
precisely of that formula. 

The formulae making up a sequent are called S-formulae (i.e., sequent 
formulae). By this we intend to indicate that we are not considering the 
formula by itself, but as it appears in the sequent. Thus we say, for example: 

‘A formula occurs in several places in a sequent as an S-formula’, which 
may also be expressed as follows: 

‘Several distinct S-formulae (which shall simply mean: having distinct 
occurrences in the sequent) are formally identical’. 
3. Figures 

We require inference figures and proof figures. 
Such figures consist of formulae or sequents, as the case may be. In what 

follows (3.1 to 3.3, 3.5) we shall be speaking only of formulae, but whatever 
is said applies analogously to sequents; all we need to do is to replace the 
word ‘formula’, wherever it occurs, by the word ‘sequent’. 
3.1. An inferenceJigure may be written in the following way: 

Bl v . . . v 23,. 

where illl , . . . , a,,, B are formulae. ill1, . . . , a, are then called the upper 
formulae and B the lower formula of the inference figure. (The concepts of 
the upper sequents and of the lower sequent of an inference figure consisting 
of sequents are to be understood correspondingly.) 

We shall have to consider only particular inference figures and they will be 
stated for each calculus as they arise. 
3.2. A proof Jigure, called a derivation for short, consists of a number of 
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formulae (at least one), which combine to form inference figures in the 
following way: Each formula is a lower formula of at most one inference 
figure; each formula (with the exception of exactly one: the endformula) 
is an upper formula of at least one inference figure; and the system of 
inference figures is noncircular, i.e., there is in the derivation no cycle 
(no sequence whose last member is again succeeded by its first member) 
of formulae such that each member is an upper formula of an inference 
figure whose lower formula is the next formula in the sequence. 
3.3. The formulae of a derivation that are not lower formulae of an inference 
figure are called initial formulae of the derivation. 

A derivation is in ‘tree form’ if each one of its formulae is an upper 
formula of at most one inference figure. 

Thus all formulae except the endformula are upper formulae of exactly 
one inference figure. 

We shall have to treat only of derivations in tree form. 
The formulae which compose a derivation so defined are called D- 

formulae (i.e., derivation formulae). By this we wish to indicate that we are 
not considering merely the formula as such, but also its position in the 
derivation. In this sense we shall be using, for example, expressions such as: 

‘A formula occurs in a derivation as a D-formula’. ‘Two distinct D- 
formulae (i.e., formulae occurring merely in distinct places in the derivation) 
are formally identical, viz., identical to the same formula’. 

and 23 are not only 
formally identical, but occur also in the same place in the derivation. We 
shall use the words ‘formally identical’ to indicate identity of form regardless 
of place. 

For object variables, however, we shall not introduce a special term that 
would associate the variable with a specific place of occurrence in the 
formula. Thus we say, e.g.: ‘The same object variable occurs in two distinct 
D-formulae.’ 
3.4. The inference figures of the derivation are called D-inference jigures 
(i.e., derivation inference figures). 

In a derivation consisting of sequents the S-formulae of the D-sequents 
are called D-S-formulae (i.e., derivation sequent formulae). 
3.5. A path in a derivation is (following Hilbert) a sequence of D-formulae 
whose first formula is an initial formula and whose last formula is the 
endformula, and of which each formula except the last is an upper formula 
of a D-inference figure whose lower formula is the next formula in the path. 

We say that ‘a D-formula stands above (below) another D-formula’ 

Thus by ‘a is the same D-formula as 123’ we mean that 
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if there exists a path in which the former occurs before (after) the latter. 
We are here thinking of the fact that a derivation is written in tree form 

with the initial formulae above and the endformula below. (Examples may 
be found in 11, 4 4.) 

Furthermore, we say that ‘a D-inference figure occurs above (below) a 
D-formula’, if all formulae of the inference figure occur above (below) that 
D-formula. 

A derivation with the endformula is also called a ‘derivation of 
The initial formulae of a derivation may be basic formulae or assumption 

formulae; more about their nature will have to be said as we reach the 
different calculi. 

SECTION 11. THE CALCULUS OF NATURAL DEDUCTION 

0 1. Examples of natural deduction 

We wish to set up a formalism that reflects as accurately as possible the 
actual logical reasoning involved in mathematical proofs. 

By means of a number of examples we shall first of all show what form 
deductions tend to take in practice and shall examine, for this purpose, 
three ‘true formulae’ and try to see their truth in the most natural way 
possible. 

1.1. First example: 
( X v  (Y & 2)) =i ( ( X v  Y )  & ( X v  2)) is to be established as a true 

formula (H.-A., p. 28, formula 19). 
The argument runs as follows: Suppose that either X or Y & Z holds. 

We distinguish the two cases: 1. X holds, 2. Y & 2 holds. In the first case 
it follows that X v  Y holds, and also X v  Z ;  hence ( X v  Y )  & ( X v  Z )  
also holds. In the second case Y & Z holds, which means that both Y and Z 
hold. From Y follows X v Y ;  from 2 follows X v Z .  Thus ( X  v Y )  & ( X  v Z )  
again holds. The latter formula has thus been derived, generally, from 
Xv(Y&Z) , i . e . , (Xv (Y&Z) )  3 ( ( X v Y ) & ( X v Z ) )  holds. 

1.2. Second example: 
(3x v y  F x y )  3 (Vy 3x Fxy ) .  
(H.-A., formula 36, p. 60). The argument runs as follows: Suppose there 

is an x such that for all y Fxy holds. Let a be such an x .  Then for all y :  
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Fay holds. Now let b be an arbitrary object. Then Fab holds. Thus there is 
an x ,  viz., a, such that Fxb holds. Since b was arbitrary, our result therefore 
holds for all objects, i.e., for all y there is an x such that Fxy holds. This 
yields our assertion. 

1.3. Third example: 
(1 3x Fx) 3 (Vy 1 Fy) is to be established as intuitionistically true. 

We reason as follows: Assume there is no x for which Fx holds. From 
this we wish to infer: For all y ,  Fy holds. Now suppose a is some object 
for which Fa holds. It then follows that there is an x for which Fx 
holds, viz., a is such an object. This contradicts our hypothesis that 
1 3 x  Fx. We have therefore a contradiction, i.e., Fa cannot hold. But 
since a was completely arbitrary, it follows that for all y ,  Fy holds. 
Q.E.D. 

We intend now to integrate proofs of the kind carried out in these three 
examples into an exactly defined calculus (in 5 4, we shall show how these 
examples are presented in that calculus). 

Q 2. Construction of the Calculus NJ 

2.1. We intend now to present a calculus for ‘natural’ intuitionist derivations 
of true formulae. The restriction to intuitionist reasoning is only provisional; 
we shall explain below (cf. 5 5) our reasons for doing so and shall show in 
what way the calculus has to be extended for classical reasoning (by in- 
cluding the law of the excluded middle). 

Externally, the essential difference between ‘NJ-derivations’ and deriva- 
tions in the systems of Russell, Hilbert, and Heyting is the following: 
In the latter systems true formulae are derived from a sequence of ‘basic 
logical formulae’ by means of a few forms of inference. Natural deduction, 
however, does not, in general, start from basic logical propositions, but 
rather from assumptions (cf. examples in 5 1) to which logical deductions 
are applied. By means of a later inference the result is then again made 
independent of the assumption. 

2.2. After this preliminary remark we define the concept of an NJ-derivation 
as follows: 

Calculi of the former kind will be referred to as logistic calculi. 

(Examples in 4 4.) 
An NJ-derivation consists of formulae arranged in tree form (13.3). 
(By demanding that the formulae are arranged in tree form we are 
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deviating somewhat from the analogy with actual reasoning. This is so, 
since in actual reasoning we necessarily have (1) a linear sequence of 
propositions due to the linear ordering of our utterances, and (2) we are 
accustomed to applying repeatedly a result once it has been obtained, 
whereas the tree form permits only of a single use of a derived formula. 
These two deviations permit us to define the concept of a derivation in a 
more convenient form and are not essential.) 

The initial formulae of the derivation are assumption formulae. Each 
of these is adjoined to precisely one D-inference figure (and in fact occurs 
‘above’ (1.3.5) the lower formula of that figure, as will be explained more 
fully below). 

All formulae occurring below an assumption formula, but still above the 
lower formula of the D-inference figure to which that assumption formula 
was adjoined, the assumption formula itself included, are said to depend 
on that assumption formula. (Thus the inference makes all succeeding 
propositions independent of the assumption which is correlated with it.) 

According to what we have said the endformula of the derivation depends 
on no assumption formula. 
2.21. We shall now state the permissible inferenceJigures. 

The inference figure schemata below are to be understood in the following 
way: 

We obtain an NJ-inference figure from one of the schemata by replacing 
%, By 6, 5B by arbitrary formulae; and V x  7& ( 3 ~  Sx) by an arbitrary 
formula containing V(3) for its terminal symbol, where F designates the 
bound object variable belonging to that terminal symbol; and Sa by the 
formula obtained from 3~ by replacing the bound variable F, wherever it 
occurs, by the free object variable a. 

(For a we may, for instance, take a variable already occurring in 3s. 
For the inference figures V-I and 3-E, this possibility will, however, be 
excluded by the restrictions on variables which follow below, but it remains 
for V-E and 3-1. Nor need b occur at all in Sx, in which case Sa is, of 
course, identical with ST. - Sa is obviously always a subformula of Vb 31 
(3b  3 b ) ,  according to the definition of a subformula in 1.2.2.) 

Symbols written in square brackets have the following meaning: An 
arbitrary number (possibly zero) of formulae of this form, all formally 
identical, may be adjoined to the inference figure as assumption formulae. 
They must then be initial formulae of the derivation and occur, moreover, 
in those paths of the proof to which the particular upper formula of the 
inference figure belongs. (Le., that upper formula above which the square 
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bracket occurs in the scheme. This formula may itself be an assumption 
formula.) 

The adjunction of the respective assumption formulae to a D-inference 
figure in a derivation must in some way be made explicit such as by appro- 
priately numbering these assumption formulae (cf. the examples in $4). 

The designations of the various inference figure schemata: &-I, &-E, etc., 
stand for the following: An inference figure formed according to a particular 
schema is an ‘introduction’ ( I )  or an ‘elimination’ ( E )  of the conjunction 
(&), the disjunction (v), the universal quantifier (V), the existential quanti- 
fier (3), the implication (x), or of the negation ( l ) .  More about this in Q 5. 

The inference figure schemata: 

&-I &-E v-I V-E 

CKI [%I 
!a % !av% c$ Q _ _ _ -  !a&% !a&% -~ % %  

!a&% !a % % v B  % v %  Q 

v-I V-E 

The free object variable of a V-I or 3-E, designated by a in the respective 
schema, is called the eigenvariable. (This, of course, presupposes that there 
is such a variable, i.e., that the bound object variable designated by z occurs 
in the formula designated by &.) 
Restrictions on variables: 

An NJ-derivation is subject to the following restriction (for the significance 
of this restriction cf. Q 3): 

The eigenvariable of an V-I must not occur in the formula designated 
in the schema by V z  &; nor in any assumption formula upon which that 
formula depends. 
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The eigenvariable of an 3-E must not occur in the formula designated 
in the schema by 3 x  &; nor in an upper formula designated by G; nor in 
any assumption formula upon which that formula depends, with the excep- 
tion of the assumption formulae designated by 3 a  in the schema of the 
3-E. 

This concludes the definition of the ‘NJ-derivation’. 

8 3. Informal sense of NJ-inference figures 

We shall explain the informal sense of a number of inference figure 
schemata and thus try to show how the calculus in fact reflects ‘actual 
reasoning’. 

3-Z: Expressed in words, this schema corresponds to the following 
inference: If B has been proved by means of assumption 8, we have (this 
time without the assumption): from 8 follows B. (Further assumptions 
may, of course, have been made and the result still continues to depend 
on them.) 

v-E (‘Distinction of cases’): If 8 v 23 has been proved, we can distinguish 
two cases: What we first assume is that 9.X holds and derive, let us say, 
G from it. If it is then possible to derive 0. also by assuming that 23 holds, 
then G holds generally, i.e., it is now independent of both assumptions 

V-Z: If @ has been proved for an ‘arbitrary then V x  & holds. The 
presupposition that a is ‘completely arbitrary’ can be expressed more 
precisely as: Sa must not depend on any assumption in which the object 
variable a occurs. And this, together with the obvious requirement that 
every occurrence of a in @I must be replaced by an x in @, constitutes 
precisely that part of the ‘restrictions on variables’ which applies to the 
schema of the V-Z. 

3-E: We have 3~ 3:s. We say: Suppose a is an object for which 8 holds, 
i.e., we assume that 3 a  holds. (It is, of course, obvious that for a we must 
take an object variable which does not yet occur in 3x @.) If, on this assump- 
tion, we then prove a proposition 0. which no longer contains a and does not 
depend on any other assumption containing a, we have proved G indepen- 
dently of the assumption %a. We have here stated the part of the ‘restrictions 
on variables’ that concerns the 3-E. (A certain analogy exists between the 
3-E and the v-E since the existential quantifier is indeed the generalization 
of v, and the universal quantifier the generalization of &.) 

signifies a contradiction and as such cannot hold true 

(cf.1.I). 

1 - E  8 and 1 
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(law of contradiction). This is formally expressed by the inference figure 
-vE, where A designates ‘the contradiction’, ‘the false’. 

7 - I :  (Reductio ad absurdum.) If we can derive any false proposition 
( A )  on an assumption 3, then clx is not true, i.e., -1 (LT holds. 

A The schema - expresses the fact that if a false proposition holds, 
%I 

any arbitrary proposition also holds. 

straightforward. 
The interpretation of the remaining inference figure schemata should be 

5 4. The three examples of 5 1 written as NJ-derivations 

First example (1.1): 

1 1 

v-I 
X 

v-I - X 
x v  Y xv  z 

&-I 2 
xv  ( Y  & z )  (XV Y )  & ( X V  z )  

(XV Y )  & (XV Z )  

(xv (Y & 2)) 1 ((1” Y )  & (XV 2)) 

1 1 
Y & Z  

Z 
- v-I - 
xv Y x v z  

y&z &-E __ 
Y 

(XV Y )  & (XV Z )  

1 -I2. 

&-E 
v-I 

&-I 

V-El 

In this example the tree form must appear somewhat artificial since it 
does not bring out the fact that it is after the enunciation of X v  (Y  & Z )  
that we distinguish the cases X ,  Y & 2. 

Second example (1.2): 

1 

QyFay \J-E 

Fab 3-1 
2 3xFxb Q-I 

3x Qy Fxy Qy 3x Fxy 
Qy 3x Fxy 

(3x Qy Fxy) 3 (Qy 3x Fxy) 

3-E, 

3 -I2. 

If we were using a linear arrangement, then the assumption of the 3-E 
would here also follow naturally behind the upper formula on the left, 
as was the case in our treatment of that example in 0 1. 
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Third example (1.3): 
2 

1 
i 3~ FX 

2% 3-1 
3x Fx 

A 
1 Fa 

VY 1 FY 

7 - E  

1-I2 

v -I 
3 -I,. 

9 5. Some remarks concerning the calculus N J .  The calculus N K  

5.1. The calculus N J  lacks a certain formal elegance. This has to be put 
against the following advantages: 
5.11. A close affinity to actual reasoning, which had been our fundamental 
aim in setting up the calculus. The calculus lends itself in particular to the 
formalization of mathematical proofs. 
5.12. In most cases the derivations for true formulae are shorter in our 
calculus than their counterparts in the logistic calculi. This is so primarily 
because in logistic derivations one and the same formula usually occurs a 
number of times (as part of other formulae), whereas this happens only very 
rarely in the case of NJ-derivations. 
5.13. The designations given to the various inference figures (2.21) make it 
plain that our calculus is remarkably systematic. To every logical symbol 
&, V ,  V, 3, 3, l, belongs precisely one inference figure which ‘introduces’ 
the symbol - as the terminal symbol of a formula - and one which 
‘eliminates’ it. The fact that the inference figures &-E and v-I each have 
two forms constitutes a trivial, purely external deviation and is of no 
interest. The introductions represent, as it were, the ‘definitions’ of the 
symbols concerned, and the eliminations are no more, in the final analysis, 
than the consequences of these definitions. This fact may be expressed as 
follows: In eliminating a symbol, we may use the formula with whose 
terminal symbol we are dealing only ‘in the sense afforded it by the introduc- 
tion of that symbol’. An example may clarify what is meant: We were able to 
introduce the formula 3 B when there existed a derivation of B from the 
assumption formula 3. If we then wished to use that formula by eliminating 
the =-symbol (we could, of course, also use it to form longer formulae, 
e.g., (3 3 %) v 6, v-I), we could do this precisely by inferring % directly, 
once 3 has been proved, for what 2 3 23 attests is just the existence of a 
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derivation of B from %. Note that in saying this we need not go into the 
‘informal sense’ of the 3-symbol. 

By making these ideas more precise it should be possible to display the 
E-inferences as unique functions of their corresponding I-inferences, 
on the basis of certain requirements. 
5.2. It is possible to eliminate the negation from our calculus by regarding 

A. This is permissible, since by replacing 
every Z by % = A, and thus removing all -,-symbols from an NJ- 
derivation, we obtain another NJ-derivation (the inference figures 7-I 
and 7-E then become special cases of the 3-I and the 3-E) and vice versa: 
If, in an NJ-derivation, we replace every occurrence of % 3 A by 1 %, 
another NJ-derivation results. 

rll as an abbreviation for % 

A 
3 

The inference figure schema - occupies a special place among the 

schemata: It does not belong to a logical symbol, but to the propositional 
symbol A. 
5.3. The ‘law of the excluded middle’ and the calculus NK. 

From the calculus NJ we obtain a complete classical calculus NK by 
including the ‘law of the excluded middle’ (tertium non datur), i.e.: In 
addition to the assumption formulae we now also allow ‘basic formulae’ 
of the form % v 

We have thus granted to the law of the excluded middle, in a purely 
external way, a special position, and we have done this because we considered 
that formulation the ‘most natural’. It would be perfectly feasible to 

introduce a new inference figure schema, say ~ (a schema analogous 

to the one formed by Hilbert and Heyting), in place of the basic formula 
schema rll v %. However, such a schema still falls outside the framework 
of the NJ-inference figures, because it represents a new elimination of the 
negation whose admissibility does not follow at all from our method of 
introducing the l-symbol by the -,-I. 

rll, where B stands for any arbitrary formula. 

11% 

% 

SECTION 111. THE DEDUCTIVE CALCULI LJ, LK AND THE 
HAUPTSATZ 

0 1. The calculi LJ and LK (logistic intuitionist and classical calculi) 

1.1. Preliminary remarks concerning the construction of the calculi U 
and LK. 
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What we want to do is to formulate a deductive calculus (for predicate 
logic) which is ‘logistic’ on the one hand, i.e., in which the derivations do not, 
as in the calculus NJ, contain assumption formulae, but which, on the other 
hand, takes over from the calculus NJ the division of the forms of inference 
into introductions and eliminations of the various logical symbols. 

The most obvious method of converting an NJ-derivation into a logistic 
one is this: We replace a D-formula 23, which depends on the assumption 
formulae !211 , . . . , !21p, by the new formula (al & . . . & ‘illp) 3 23. This 
we do with all D-formulae. 

We thus obtain formulae which are already true in themselves, i.e., whose 
truth is no longer conditional on the truth of certain assumption formulae. 
This procedure, however, introduces new logical symbols & and 3, neces- 
sitating additional inference figures for & and 3, and thus upsets the 
systematic character of our method of introducing and eliminating symbols. 
For this reason we have introduced the concept of a sequent (1.2.3). Instead 
of a formula (a, & . . . & ‘illp) 3 23, e.g., we therefore write the sequent 

The informal meaning of this sequent is no different from that of the 
above formula; the expressions differ merely in their formal structure 
(cf. I. 2.4). 

Even now new inference figures are required that cannot be integrated 
into our system of introductions and eliminations; but we have the advantage 
of being able to reserve them special places within our system, since they 
no longer refer to logical symbols, but merely to the structure of the sequents. 
We therefore call these ‘structural inference figures’, and the others ‘opera- 
tional inference figures’. 

In the classical calculus NK the law of the excluded middle occupied a 
special place among the forms of inference (11.5.3), because it could not be 
integrated into our system of introductions and eliminations. In the classical 
logistic calculus LK about to be presented, this characteristic is removed. 
This is made possible by the admission of sequents with several formulae 
in the succedent, whereas the transition from the calculus NJ just described 
led only to sequents with one formula in the succedent. (For the informal 
meaning of sequents in general cf. 1.2.4.) The symmetry thus obtained is 
more suited to classical logic. On the other hand, the restriction to at most 
one formula in the succedent will be retained for the intuitionist calculus 
LJ. (Cf. below. - An empty succedent means the same as if A stood in the 
succedent. ) 
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We have thus outlined a number of points that underlie the construction 
of the calculi that follow. Their form is largely determined, however, by 
considerations connected with the ‘Hauptsatz’ (a 2) whose proof follows 
later. That form cannot therefore be justified more fully at this stage. 
1.2. We now define the concepts of an ‘LK-derivation’ and an ‘LJ-derivation’ 
as follows: 

An LJ- or LK-derivation consists of sequents arranged in tree form 
(1.3.3). 

The initial sequents of the derivation are basic sequents of the form 
5D + 3, where 5D may be an arbitrary formula. 

Each inferencefigure of the derivation results from one of the schemata 
below by a substitution of the following kind (cf. 11.2.21): 

Replace a, 23, B, Q by an arbitrary formula; for V x  3~ ( 3 ~  3~)  put an 
arbitrary formula having V(3) for its terminal symbol, where designates 
the associated bound object variable; for 3 a  put that formula which is 
obtained from Sx by replacing every occurrence of the bound object 
variable g by the free object variable a. 

For r, A ,  0, A put arbitrary (possibly empty) sequences of formulae 
separated by commas. 

The following restriction is furthermore placed on LJ-inference figures 
(this is the only respect in which the concepts of an LJ- and an LK-derivation 
differ): 

‘In the succedent of each D-sequent no more than one S-formula may 
occur’. 

The designations of the various schemata for operational inference figures 
&-IS, &-IA, etc., are intended to mean: An inference figure formed 
according to the schema is an introduction ( I )  in the succedent (S) or 
antecedent ( A )  of the conjunction (&), the disjunction (v), the universal 
quantifier (V), the existential quantifier (3), the negation (-I), or the 
implication (3). 

The inference jgure schemata 

1.21. Schemata for structural inference figures: 

Thinning: 

in the antecedent in the succedent 
r -+@ r -+o . 

%,r+o ’  r - + 0 , B 7  
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Contraction: 
in the antecedent in the succedent 
sb, sb, r -+ o r -+ o,~ ,sb .  

%,r -+d  r-+o,% 
Interchange: 

in the antecedent in the succedent 
A ,  9, e, r -+ o 
A ,  e, B, r -+ o 

r -+ o, e, 9, A . 
r -+ o, %,&, A 

cut: 
r -+o ,s  B , A - + A  

r, 4 -+ o, A 

1.22. Schemata for operational inference figures: 

@,r-+o 
3Zi!iO, r -+ 0 

3-IA : 

Restrictions on variables: The object variable in the last two schemata, 
which is designated by a and is called the eigenvariable of the V-IS (S-IA), 
must not occur in the lower sequent of the inference figure (i.e., not in 
r, 0, and 3 ~ ) .  
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r40,9i 
l u , r + o  
u, r -+ o, B 

r + o, u 3 B ’  

r + o , u  B , A + A  
u = , ~ , r , ~ + o , n  

1 - I A  : 

3 4 s  : 

3 - I A :  

1.3. Example of an LJ-derivation (using 11.1.3): 

1 - f  A 
1 3~ Fx,  3~ FX + 

3~ F x ,  i 3~ FX + 
Fa + Fa 3-1s Interchange 
Fa  + 3x F x  
- Cut 

Fa ,  3x Fx  + 1-IS 
3x Fx + Fa 

v-IS 
i 3 x  FX + Vy i F y  

=-IS. 
+ (7 3x F x )  3 ( V p  F y )  

1.4. Example of an LK-derivation (derivation of the ‘law of the excluded 
middle’): 

A + A  
1-1s 

A v-IS + A,  i 
+ A , A v T A  

+ A v - - I A , A  
+ A V  7 A , A v  --I A 

- t A v i A  

Interchange 

v-I s 
Contraction. 

0 2. Some remarks concerning the calculi LJ and LK. The Hauptsatz 

(We shall make no further use, in this paper, of remarks 2.1 to 2.3.) 
2.1. The schemata are not all mutually independent, i.e., certain schemata 
could be eliminated with the help of the remaining ones. Yet if they were 
left out, the ‘Hauptsatz’ would no longer be valid. 
2.2. In general, we could simplifv the calculi in various respects if we 
attached no importance to the Hauptsatz. To indicate this briefly: the 
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inference figures &-IS, v-ZA, &-ZA, v-IS, V-IA, 3-ZSY 1 - Z S ,  1-ZA, and 
=-ZA in the calculus LK could be replaced by basic sequents according to 
the following schemata: 

8,B+8&% 8VB-+8,B 8 & B + 8  % & B + B  
8 + % V %  % + 8 V B  Vs8:F + 8 a  8 a  + %8:F 
+ 8, 7 8 (law of the excluded middle) 

1 8,8 + (law of contradiction) 

%=%,8+B. 

These basic sequents and our inference figures may easily be shown 
to be equivalent. 

The same possibility exists for the calculus LJ, with the exception of the 
inference figures v-ZA and l-ZS, since LJ-D-sequents may not in fact 
contain two S-formulae in the succedent (cf. V. 9 5). 
2.3. The distinction between intuitionist and classical logic is, externally, 
of a quite different type in the calculi L J  and LK from that in the calculi 
NJ  and NK. In the case of the latter, the distinction is based on the inclusion 
or exclusion of the law of the excluded middle, whereas for the calculi L J  
and LK the difference is characterized by the restriction on the succedent. 
(The fact that both distinctions are equivalent will become evident as a 
result of the equivalence proofs in section V for all calculi discussed in this 

2.4. If 1 - Z S  and the 1-ZA are excluded, the calculus LK is dual in the 
following sense: If we reverse all sequents of an LK-derivation (in which the 
=-symbol does not occur), i.e., if for , . . . , 8,, + Bl , . . . , Bv we put 
By,. . . , B1 + a,,,. . . , g1, and if we exchange, in inference figures with 
two upper sequents, the right- and left-hand upper sequents, including their 
derivations, and also replace every occurrence of & by v, V by 3, v by &, 
and 3 by V (in the case of & and v we also have to interchange the respective 
scopes of the symbols, e.g., for B v 8 we have to put 8 & B), then another 
LK-derivation results. 

This can be seen at once from the schemata. (Special care was taken to 
arrange them in such a way as to bring out their symmetry.) (Cf. H.-A.’s 
duality principle, p. 62.) 
2.41. In any case, the =-symbol may, in a well-known manner, be eliminated 
from the calculus NK, by regarding 8 3 B as an abbreviation for (1 8) v B. 
It may easily be shown that the schemata for the 3-ZS and the Z-ZA 
may then be replaced by the schemata for v and l. 

paper. 1 
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The calculus N J  has no corresponding property. 
2.5. The most important fact for us with regard to the calculi L J  and LK 
is the following: 

HAUPTSATZ: Every LJ- or LK-derivation can be transformed into an LJ- 
or LK-derivation with the same endsequent and in which the inference 
figure called a ‘cut’ does not occur. 

The proof follows in 0 3. 
2.51. In order to give greater clarity to the meaning of the Hauptsatz, 
we shall prove a simple corollary (2.513). 

For this purpose we introduce a number of expressions (which will be 
needed frequently later on) relating to the operational inference figures: 
2.511. That S-formula which contains the logical symbol in its schema will 
be called the principal formula of an inference figure. 

For the &-IS and the &-IA this is simply the S-formula of the form 
2l & 23; for the v-IS and the v-IA it is 2l v 23; for the V-IS and the V-IA 
it is VF 8s; for the 3-IS and the 3-IA it is 3s 8s; for the ?-IS and the 
7 - I A  it is 8; and for the =-IS and the 3 - I A  it is 2l 1 23. 

The S-formulae designated by a, 23, Sa in the schemata will be called 
the side formulae of the respective inference figures. 

They are always subformulae of the principal formula (according to the 
definition of a subformula in 1.2.2). 
2.512. We can now easily read off the following facts from the inference 
figure schemata: 

The principal formula occurs always in the lower sequent and the side 
formulae always in the upper sequents of an operational inference figure. 

If a formula occurs as an S-formula in an upper sequent of a given 
inference figure, and if it is here neither a side formula nor the % of a cut, 
then it occurs also as an S-formula in the lower sequent. 

These two facts entail the following: 
If anywhere in an LJ- or LK-derivation a formula occurs as an S-formula, 

and if we trace the path of the derivation from the formula concerned up 
to the endsequent, the formula can only vanish from that path if it is the 
% of a cut or the side formula of an operational inference figure. In the 
latter case, however, there appears, in the next sequent, the principal formula 
of the inference figure of which our side formula is a subformula. To that 
principal formula we can then, continuing downwards, apply the same 
consideration, and so on. Thus we obtain the following corollary: 
2.513. COROLLARY OF THE HAUPTSATZ (SUBFORMULA PROPERTY): In an LJ- or 
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LK-derivation without cuts, all occurring D-S-formulae are subformulae of 
the S-formulae that occur in the endsequent. 
2.514. Intuitively speaking, these properties of derivations without cuts 
may be expressed as follows: The S-formulae become longer as we descend 
lower down in the derivation, never shorter. The final result is, as it were, 
gradually built up from its constituent elements. The proof represented by 
the derivation is not roundabout in that it contains only concepts which 
recur in the final result (cf. the synopsis at  the beginning of this paper). 

3 F 3 g )  3 (Vg 7 39) 
msy be written without a cut as follows: 

Example: The derivation given above (1.3) for + ( 

Fa -+ Fa 

Fa -+ 3x Fx 
34s 

1 - I A  
3x Fx, Fa + 

Fa, 3x F x  -+ 

Interchange, 

etc., as above. 

$3.  Proof of the Hauptsatz 

The Hauptsatz runs as follows: 
Every LJ- or LK-derivation can be transformed into another LJ- or 

LK-derivation with the same endsequent, in which no cuts occur. 
3.1. Proof of the Hauptsatz for LK-derivations. 

We introduce a new inference figure (in order to facilitate the proof) 
which constitutes a modified form of the cut, and which we call a mix. 

The schema of that figure runs as follows: 

In order to obtain an inference figure from this schema, 0 and A must be 
replaced by sequences of formulae, separated by commas, in each of which 
occurs at least once (as a member of the sequence) a formula of the form D, 
called the ‘mix formula’; and @* and A* must be replaced by the same 
sequences of formulae, save that all formulae of the form ‘93 occurring as 
members of the sequence are omitted. (‘93 may be any arbitrary formula.) 
r and A must be replaced, as in the other schemata, by arbitrary (possibly 
empty) sequences of formulae, separated by commas. 
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Example of a mix: 

89 

A + B y  1 A B V  C,  B, By D,  B 4 

A , B v C , D + i A  

B is the mix formula. 
We notice at once that every cut may be transformed into a mix by means 

of a number of thinnings and interchanges. (Conversely, every mix may be 
transformed into a cut by means of a certain number of preceding inter- 
changes and contractions, though we do not use this fact.) 

In the following we shall consider only derivations in which no cufs occur, 
but which may contain mixes instead. 

Since derivations in the old sense may be transformed into derivations 
of the new kind, it suffices, for the proof of the Hauptsatz, to show that a 
derivation of the new type may be transformed into a derivation with 
no mix. 

Furthermore, the following lemma is already sufficient: 

LEMMA: A derivation with a mix for its lowest inference figure, and not 
containing any other mix, may be transformed into a derivation (with the 
same endsequent) in which no mix occurs. 

From this the theorem as a whole easily follows: 
In an arbitrary derivation consider a mix above whose lower sequent 

no further mix occurs. The derivation for this lower sequent is then of the 
kind mentioned in the lemma, i.e., it may be transformed in such a way 
that it no longer contains a mix. In doing so, the rest of the derivation 
remains unchanged. This operation is then repeated until every mix has 
systematically been eliminated. 

It now remains for us to establish the proof of the lemma. (This proof 
extends into 3.2 incl.) 

We have to consider a derivation whose lowest inference figure is a mix 
and which contains no other mix. 

The degree of the mix formula will be called the ‘degree of the derivation’ 
(defined in 1.2.2). 

We shall call the rank of the derivation the sum of its rank on the left 
and its rank on the right. These two terms are defined as follows: 

The left rank is the largest number of consecutive sequents in a path so 
that the lowest of these sequents is the left-hand upper sequent of the mix 
and each of the sequents contains the mix formula in the succedent. 
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The right rank is (correspondingly) the largest number of consecutive 
sequents in a path so that the lowest of these sequents is the right-hand 
upper sequent of the mix and each of the sequents contains the mix formala 
in the antecedent. 

The lowest possible rank is evidently 2. 
To prove the lemma we carry out two complete inductions, one on the 

degree y, the other on the rank p ,  of the derivation, i.e., we prove the 
theorem for a derivation of degree y ,  assuming it to hold for derivations 
of a lower degree (in so far as there are such derivations, i.e., as long as 
y is not equal to zero), supposing, therefore, that derivations of lower 
degree can already be transformed into derivations with no mix. Further- 
more, we shall begin by considering the case where the rank p of the deriva- 
tion equals 2 (3.11), and after that the case of p > 2 (3.12), where we 
assume that the theorem already holds for derivations of the same degree, 
but of a lower rank. 

In the following German capital letters will generally serve as syntactic 
variables for formulae, and Greek capital letters as syntactic variables for 
(possibly empty) sequences of formulae. 

In transforming derivations, we shall occasionally meet ‘identical inference 
figures’, i.e., inference figures with identical upper and lower sequents. 
Since we have not admitted such figures in our calculus, they must be 
eliminated as soon as they occur; we can do this trivially by omitting one of 
the two sequents. 

The mix formula of the mix that occurs at the end of the derivation is 
designated by !JJ?. It is of degree y. 
3.10. Redesignating of free object variables in preparation for the trans- 
formation of derivations. 

3.101. For every V-IS (3-IA) it holds that: Its eigenvariable occurs in the 
derivation only in sequents above the lower sequent of the V-IS ( 3 4 4 )  
and does not occur as an eigenvariable in any other V-IS (344).  
3.102. This is achieved by redesignating free object variables in the follow- 
ing way: 

We take a V-IS (3-IA) above whose lower sequent either no further 
inference figures of this kind occur, or if they do, they have already been 
dealt with in a way still to be described. 

In all sequents above the lower sequent of this inference figure we replace 
the eigenvariable by one and the same free object variable which, so far, 
has not yet occurred in the derivation. This obviously leaves the V-IS 

We wish to obtain a derivation that has the following properties: 



5 3, PROOF OF THE Hauptsatr 91 

(344)  itself correct, as is easily seen. (The eigenvariable did not in fact 
occur in its lower sequent.) Furthermore, rest of the derivation remains 
correct, as is shown by the lemma to follow shortly. 

A systematic application of this method to every single V-IS and 3-IA, 
thus leaves the derivation correct throughout and the conclusion ob- 
viously has the desired property (3.101). Furthermore, as was essential, 
the degree and rank of the derivation, as well as its endsequent, have 
remained unaltered. 
3.103. Now we give the still outstanding proof of the following lemma. 
(It is enunciated in a somewhat more general form than is immediately 
necessary, since we shall have to apply it again later on (3.1 13.33)) 

An LK-basic sequent or inference figure becomes a basic sequent or 
inference figure of the same kind, if we replace a free object variable which 
is not the eigenvariable of the inference figure in all its occurrences in the 
basic sequent or inference figure, by one and the same free object variable, 
provided again that this is not the eigenvariable of the inference figure. 

This holds trivially except for the V-IS, V-IA, 3-1s and 3 4 4 .  Even here, 
however, there is no cause for concern: the restrictions on variables are not 
violated, since we may neither substitute nor replace the eigenvariable. 
(This is the reason why both restrictions on variables are necessary.) 
Furthermore, the formula resulting from %a is again obtained by substituting 
a for F in the formula resulting from 3:s. 

Having prepared the way (3.10), we now proceed to the actual transforma- 
tion of the derivation which serves to eliminate the mix occurring in it. 

As already mentioned, we distinguish the two cases: p = 2 (3.11) and 
p > 2 (3.12). 
3.11. Suppose p = 2. 

We distinguish between several individual cases, of which the cases 
3.111, 3.112, 3.113.1, 3.113.2 are especially simple in that they allow the 
mix to be immediately eliminated. The other cases (3.113.3) are the most 
important since their consideration brings out the basic idea behind the 
whole transformation. Here we use the induction hypothesis with respect 
to y, i.e., we reduce each one of the cases to transformed derivations of a 
lower degree. 
3.111. Suppose the left-hand upper sequent of the mix at the end of the 
derivation is a basic sequent. The mix then reads: 

%R+%R A + A  
%R,A*-+A 

7 
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which is transformed into: 

A - + A  

!JX,A*-+A 
possibly several interchanges and contractions. 

That part of the derivation which is above A -+ A remains the same, and 
we thus have a derivation without a mix. 
3.112. Suppose the right-hand upper sequent of the mix is a basic sequent. 
The treatment of this case is symmetric to that of the previous one. We have 
only to regard the two schemata as ‘duals’ (cf. 2.4). 
3.113. Suppose that neither the left- nor the right-hand upper sequent of 
the mix is a basic sequent. Then both are lower sequents of inferenceJigures 
since p = 2, and the right and left rank both equal 1, i.e.: In the sequents 
directly above the lef-hand upper sequent of the mix, the mix formula !JX 
does not occur in the succedent; in the sequents directly above the right-hand 
upper sequent ‘3n does not occur in the antecedent. 

Now the following holds generally: If a formula occurs in the antecedent 
(succedent) of the lower sequent of an inference figure, it is either a principal 
formula or the 9 of a thinning, or else it also occurs in the antecedent 
(succedent) in at least one upper sequent of the inference figure. 

This can be seen immediately by looking at the inference figure schemata 

If we now consider the hypotheses in the following three cases, we see 
at once that they exhaust all the possibilities that exist within case 3.113. 
3.113.1. Suppose the left-hand upper sequent of the mix is the lower sequent 
of a thinning. Then the conclusion of the derivation runs: 

(1.21, 1.22). 

r -+o  
r + o , n  A + A  

r, A* --* 0, A 

This is transformed into: 

r + o  
possibly several thinnings and interchanges. r, A* --f 0, A 

That part of the derivation which occurs above A --f A disappears. 
3.113.2. Suppose the right-hand upper sequent of the mix is the lower 
sequent of a thinning. This case is dealt with symmetrically to the 
previous one. 
3.113.3. The mix formula % occurs both in the succedent of the left-hand 
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upper sequent and in the antecedent of the right-hand upper sequent solely 
as the principal formula of one of the operational inference figures. 

is &, v, V, 3, 1, 1, 

we distinguish the cases 3.113.31 to 3.113.36 (a formula without logical 
symbols cannot be a principal formula). 
3.113.31. Suppose the terminal symbol of YI'l is &. In that case the end of 
the derivation runs: 

Depending on whether the terminal symbol of 

'5 r2  * '2 &-IA &-IS rl -+ @,,a rl -+ q , ~  

r l , r2  -+ 

mix 
rl -+ @ , , a & ~  a&23,r2-+02 

(the other form of the &-IA is treated analogously). 
We transform it into: 

rl -+ 0, , a a, r2 -+ o2 mix 
rl , r; -+ o;, o2 
rl,r2 -+ ol, o2 

possibly several thinnings and interchanges. 

We can now apply the induction hypothesis with respect to y to that part 
of the derivation whose lowest sequent is rl , rz + O:, 0, , because it has 
a lower degree than y. (a obviously contains fewer logical symbols than 
8 & 23.) This means that the whole derivation may be transformed into 
one with no mix. 
3.113.32. Suppose the terminal symbol of )rJt is v. This case is dealt with 
symmetrically to the previous one. 
3.113.33. Suppose the terminal symbol of )rJt is V. Then the end of the 
derivation runs: 

This is transformed into: 

rl -+ o1 , 8b ?ih rz -, o2 mix 
rl,r; -+ o;, o2 
r l ,r2 -+ 01,02 

possibly several thinnings and interchanges. 

Above the left-hand upper sequent of the mix, rl 3 0, , %by we write 
the same part of the derivation which previously occurred above 
rl -+ 0, , %a, yet having replaced every occurrence of the free object 
variable a by b. It now follows from lemma 3.103, together with 3.101, 
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that in performing this operation the part of the derivation aboue 
rl -+ 0, , Sb has again become a correct part of the derivation. (By virtue 
of 3.101 neither a nor b can be the eigenvariable of an inference figure 
occurring in that part of the derivation.) The same consideration may be 
applied to that part of the derivation which includes the sequent 
rl -+ 0, , ?jb, since it too results from rl -+ a,, %a by the substitution 
of b for a. It is now in fact clear that by virtue of the restriction on variables 
for V-IS, a could have occurred neither in rl and 0, , nor in 8 ~ .  Further- 
more, %a results from '& by the substitution a for x, and sb from Sx by the 
substitution b for x. This is why sb results from Sa by the substitution b 
for a. 

The mix formula 86 in the new derivation has a lower degree than y. 
Therefore, according to the induction hypothesis, the mix may be eliminated. 
3.113.34. Suppose the terminal symbol of Zm is 3. This case is dealt with 
symmetrically to the previous one. 
3.113.35. Suppose the terminal symbol of Zm is l. Then the end of the 
derivation runs: 

a,rl -+ o1 r2 -+ 02,  a 7 4 s  7 - I A  
rl -+ ol, la 1 a, r2 + 0 2  mix. 

r l ,  r2 -+ o,, o2 
This is transformed into: 

r2 -+ 02,a %,r1 -+ o, mix 
r2,r :  -+ or, o, 
r l ,r2 -+ ol, o2 

possibly several interchanges and thinnings. 

The new mix may be eliminated by virtue of the induction hypothesis. 
3.113.36. Suppose the terminal symbol of Zm is 2. Then the end of the 
derivation runs: 

r-+o,a B , A - + A  
a = BJ, A -+ o, A 

=-IS 3 - I A  a, rl -+ o,, B 

mix. 
rl -+ @,,a 3 B 

r, , r, A -+ o, , o, A 

a , r , - + o l , ~  B , A - + A  
This is transformed into: 

mix 

mix 
r+o,a % J , ,  A* -+ O:,  A 

r, r:, A** -+ 0*, O:, A 
possibly several interchanges and thinnings. rl , r, A -+ o1 , o, A 
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(The asterisks are, of course, intended as follows: A* and @* result from 
A and 0, by the omission of all S-formulae of the form %; r* , A** and @* 
result fromr, , A* and 0 by the omission of all S-formulae of the form 8.) 

Now we have two mixes, but both mix formulae are of a lower degree than 
y .  We first apply the induction hypothesis to the upper mix (i.e., to that 
part of the derivation whose lowest figure it is). Thus the upper mix may be 
eliminated. We can then also eliminate the lower mix. 
3.12. Suppose p > 2. 

To begin with, we distinguish two main cases: First case: The right rank 
is greater than 1 (3.121). Second case: The right rank is equal to 1 and the 
left rank is therefore greater than 1 (3.122). 

The second case may essentially be dealt with symmetrically to the first. 
3.121. Suppose the right rank is greater than 1. 

1.e.: The right-hand upper sequent of the mix is the lower sequent of an 
inference figure, let us call it Sf, and occurs in the antecedent of at least 
one upper sequent of Sf. 

The basic idea behind the transformation procedure is the following: 
In the case of p = 2, we generally reduced the derivation to one of a 

lower degree. NOW, however, we shall proceed to reduce the derivation to 
one of the same degree, but of a lower rank, in order to be able to use the 
induction hypothesis with respect to p. 

The only exception is the first case, 3.121.1, where the mix may be 
eliminated immediately. 

In the remaihing cases the reduction to derivations of a lower rank is 
achieved in the following way: The mix is, as it were, moved up one level 
within the derivation, beyond the inference figure Sf. (Case 3.121.231, 
for example, illustrates this point particularly well.) To speak more precisely, 
the left-hand upper sequent of the mix (which from now on will be de- 
signated by I7 + Z), at present occurring beside the lower sequent of Sf, 
is instead written next to the upper sequents of Sf. These now become upper 
sequents of new mixes. The lower sequents of these mixes are now used as 
upper sequents of a new inference figure that takes the place of Sf. This 
new inference figure takes us back either directly, or after having added 
further inference figures, to the original endsequent. Each new mix obviously 
has a rank smaller than p, since the left rank remains unchanged and the 
right rank is diminished by at least 1. 

In the strict application of this basic idea special circumstances still arise 
which make it necessary to distinguish the corresponding cases and to deal 
with them separately. 
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3.121.1. Suppose 9Jl occurs in the antecedent of the left-hand upper sequent 
of the mix. The end of the derivation runs: 

This is transformed into: 

A - t A  
possibly several thinnings, contractions and interchanges. n, A* + z*, A 

3.121.2. Suppose does not occur in the antecedent of the left-hand upper 
sequent of the mix.(This hypothesis will be used for the first time in 3.121.222.) 
3.121.21. Suppose 8f is a thinning, contraction, or interchange in the 
antecedent. Then the end of the derivation runs: 

Qf 
ly-0 

n + z  3 - 0  
mix. n, 8* + z*, 0 

This is transformed into: 

possibly several interchanges 
Y*. n + x*. 0 - 
F, n -+ x*, 0 " 

n,5* 4 z*, 0 
possibly several interchanges. 

The inference figure marked $ is of the same kind as 3f, in so far as the 
S-formulae designated in the schema of 8f (in 1.21) by 5D and Q, were not 
equal to D. If 5D or Q is equal to B, we have an identical inference figure 
(Y* equals S*). 

The derivation for the lower sequent of the new mix has the same left 
rank as the old derivation, whereas its right rank is lower by 1. Thus the mix 
may be completely eliminated by virtue of the induction hypothesis. 
3.121.22. Suppose af is an inference figure with one upper sequent, but not 
containing a thinning, contraction, or interchange in the antecedent. Then 
the end of the derivation runs: 

n + x  z,r+tz, 
n, %*, r* + z*, n, mix. 
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Here we have collected in 1" the same S-formulae that are designated by 
r in the schema of the inference figure (1.21, 1.22). Hence Y may be empty 
or consist of a side formula of the inference figure, and E may be empty or 
consist of the principal formula of the inference figure. 

First of all, the end of the derivation is transformed into: 

n-+z ~ , r - + a ~  
n, Y*, r* -+. c*, 52, 

Y ,  r*, n -+ z*, al 
8, r*, n -+ c*, 52, 

mix 

possibly several interchanges and thinnings. 

The lowest inference is obviously an inference figure of the same kind as 
Sf (taking r*, n as the r of the inference figure and including Z* in the 0 
of the inference figure). 

We must only be careful not to violate the restrictions on variables 
(if 8f is a V-IS or 3 - h ) :  Any such violation is precluded by 3.101, which 
entails that an eigenvariable that may have occurred in Sf cannot have 
occurred in 17 and Z. 

The mix may be eliminated from the new derivation by virtue of the 
induction hypothesis. 

We therefore obtain a derivation with no mix and which is terminated 
by the following inference figure: 

Y ,  r*, n -+ z*, 52, 
E, r*, n -+ z*, a2 ' 

In general, the endsequent is not yet of the form aimed at. Hence we 
proceed as follows: 
3.121.221. Suppose E does not contain '9X. 

In that case we perform a number of interchanges, if necessary, and 
obtain the endsequent of the original derivation. 
3.121.222. Suppose B contains '9X. Then E is the principal formula of sf 
and is identical with %. We then adjoin: 

n -+ L; %, r*, n -+ z*, 52, 
n, r*, n* .+ z*, c*, sz, 

n, r* -+ z*, a, 
possibly several contractions and interchanges. 

Once again, this is the endsequent of the original derivation. (Above 
l7 -+ Z we once more write the derivation associated with it.) Thus we have 
another mix in the derivation. The left rank of our derivation is the same 
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as that of the original derivation. The right rank is now equal to 1 .  This 
is so because directly above the right-hand upper sequent occurs the sequent 

Y,  r*, n -, z*, a,. 

m no longer occurs in its antecedent, for r* does not contain 'D, nor 
does n, because of 3.121.2; and Y contains at most one side formula of 
3f, which cannot be equal to m, since the principal forniula of 3f is equal 
to m. 

Hence this mix, too, may be eliminated by virtue of the induction hypo- 
thesis. 
3.121.23. Suppose 3f is an inference figure with two upper sequents, i.e., 
a &-IS, v-IA, or a x-IA. 

(In view of the application to intuitionist logic (3.2) we shall deal with 
each possibility in greater detail than would be necessary for the classical 
case.) 
3.121.231. Suppose Sf is a &-IS. 

Then the end of the derivation runs: 

r-+o,a r -+o,% &,Is 

mix. 
u - + z  r - + o , % m  

n, r* -+ z*, o, 'LI & % 

(m occurs in r.) This is transformed into: 

n-+c  r - + o , a m i x  n + z  r -+o,% mix 

n, r* -+ z*, o, 'LI n, r* -+ z*, 0, % &-Is. 
n, r* -+ z*, o, % & 8 

Both mixes may be eliminated by virtue of the induction hypothesis. 

Then the end of the derivation runs: 
3.121.232. Suppose Sf is a d-IA. 

V-IA 
%,r-+o %,r-,o 

n + c  ixv%,r-+o mix. 
n, (a v %)*, r* -+ c*, o 

((a v %)* stands either for 
unequal or equal to !lX.) 

and the right rank would be equal to 1 contrary to 3.121.) 

v % or for nothing according as 'LI v % is 

'D certainly occurs in r. (For otherwise !lX would be equal to 'LI v 8, 

To begin with, we transform the end of the derivation into: 
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n 4 z  %,r-+omix II -+ I: %, r' -+ o mix 

a, n, r* -+ z*, 0 

r* * '*, possibly several inter- 
changes and thinnings 

n, B*9 r* --f Z*7 @ possibly several inter- 
changes and thinnings 

8, n, r* -+ z*, o v-IA. 
8 v B, n, r'* -+ z*, o 

Both mixes may be eliminated by virtue of the induction hypothesis. 
From here on the procedure is the same as that in 3.121.221 and 3.121.222, 

i.e., we distinguish two cases according as % v B is unequal or equal to YJl. 
In the first case we may have to add several interchanges to obtain the 
endsequent of the original derivation; in the second case we add a mix with 
Il -+ I: for its left-hand upper sequent, and thus once again obtain the 
endsequent of the original derivation by going on to perform a number of 
contractions and interchanges, if necessary. The mix concerned may be 
eliminated, since the associated right rank equals 1. (All this as in 3.121.222.) 
3.121.233. Suppose 3f is a I- IA. 

Then the end of the derivation runs: 

3.121.233.1. Suppose 2Jl occurs in r and A .  
In that case we begin by transforming the derivation into: 

I I + Z  B , A - + A m i x  

n + ~  r-+0,% %*, '* -+ '*, possibly several inter- 
mix changes and thinnings 

I - I A .  
n, r* 4 z*, o, % %, II, A* -+ Z*, A 

8 3 8, n, r*, 17, A* + Z*, 0, Z*, A 

Both mixes may be eliminated by virtue of the induction hypothesis. 
'Then we proceed as in 3.121.221 and 3.121.222. (All that may happen in 
the first case is that beside interchanges a number of contractions become 
necessary.) 
3.121.233.2. Suppose 2Jl does not occur in both r and A simultaneously. 
%R must occur in either r or A because of 3.121. Consider the case of YIl 
occurring in A but not in r. The second case is treated analogously. 

The end of the derivation is transformed into: 
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IZ -+Z  B , A - t A m i x  

possibly several interchanges and thinnings 
n, B*, A* -, Z*, A 

8, n, A* -+ c*, A 3-IA. r-+B,a 
8 3 8, r, n, A* -+ O,,Z*, A 

The mix may be eliminated by virtue of the induction hypothesis. We 
then proceed as in 3.121.221 and 3.121.222. (In the second case, where 
% 3 B is equal to %!, the right rank belonging to the new mix equals 1 as 
always, since %! does not occur in By n, A* for the usual reasons, nor does 
it occur in r according to the assumption in the case under consideration.) 
3.122. Suppose the right rank is equal to 1. In that case the left rank is 
greater than 1. 

This case is, in essence, treated dually to 3.121. Special attention is required 
only for those inference figures with no symmetric counterpart, viz., the 
3-ZS and the 3-ZA. 

The inference figures 3f with one upper sequent were incorporated, in 
3.121.22, in the general schema: 

The dual schema runs: 

Q, -+ r, Y 

n, -+ r, 

which also covers the 3-1s without any further change. (r here represents 
the formulae designated by 0 in the schemata 1.21, 1.22.) 
3.122.1. On the other hand, the case where the inference figure %f is a 
I - IA,  must be treated separately. Although this treatment will seem very 
similar to that in 3.121.233, it is not entirely dual. 

Thus the end of the derivation runs: 

3.122.11. Suppose 
the end of the derivation into: 

occurs both in 0 and A.  In that case we transform 
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Both mixes may be eliminated by virtue of the induction hypothesis. 
3.122.12. Suppose 93 does not occur in both 0 and A simultaneously. 
It must occur in one of them. We consider the case of 93 occurring in A,  but 
not in 0; the alternative case is completely analogous. 

We transform the end of the derivation into: 

B , A - + A  Z - I l  mix 

r -+@,a B, A, C* + A*, fl 3- IA .  
3 B, r, A, Z* --+ 0, A*, Il 

The mix may be eliminated by virtue of the induction hypothesis. 

3.2. Proof of the Hauptsatz fo r  LJ-derivations. 
In order to transform an LJ-derivation into an LJ-derivation without cuts, 

we apply exactly the same procedure as for LK-derivations. 
Since an LJ-derivation is a special case of an LK-derivation, it is clear 

that the transformation can be carried out. We have only to convince 
ourselves that with every transformation step an LJ-derivation becomes 
another LJ-derivation, i.e., that the D-sequents of the transformed deriva- 
tion do not contain more than one S-formula in the succedent, given that 
this was the case before. 

We therefore examine each step of the transformation from that point 
of view. 
3.21. Replacement of cuts by mixes. An LJ-cut runs: 

r-+b D , A - + A  
Y 

r , A - + A  

where A contains at most one S-formula. We transform this cut into: 

r - + b  b , d - , n m i x  

r, A* -+ A 

r , A - + A  

This replacement gives us a new LJ-derivation. 

possibly several interchanges and thinnings in the antecedent. 
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3.22. By relabelling free object variables (3.10) we trivially get another 
LJ-derivation from a previous one. 
3.23. The transformation proper (3.1 1 and 3.12). 

We have to show for each of the cases 3.11 1 to 3.122.12 that the specified 
transformations do not introduce any sequents with more than one S- 
formula in the succedent. 
3.231. Let us begin with the cases 3.11: 

In the cases 3.111, 3.113.1, 3.113.31, 3.113.35 and 3.113.36, only such 
formulae occur in each succedent of the sequent of a new derivation as had 
already occurred in the succedent of the sequent of the original derivation. 

Essentially the same applies in 3.113.33. The only difference is an addi- 
tional replacement of free object variables, which does not, of course, 
alter the number of succedent formulae of a sequent. 

Cases 3.112, 3.113.2,3.113.32, and 3.113.34 were dealt with symmetrically 
tocases3.111,3.113.1,3.113.31,and3.113.33,i.e.,inordertogetonecase 
from another, we read the schemata from right to left instead of from left 
to right (as well as changing logical symbols, a process which is here of no 
consequence). Hence in the antecedent of one case we get precisely the 
same as in the succedent of another. For the antecedents of cases 3.111, 
3.113.1, 3.113.31 and 3.113.33, the same applies as for the succedents, viz., 
in every antecedent of a sequent of the new derivation only such formulae 
occur as had already occurred in an antecedent of a sequent of the original 
derivation. 

This disposes of all dual cases: 3.112, 3.113.2, 3.113.32 and 3.113.34. 
3.232. Now let us look at the cases, 3.12: 
3.232.1. For the cases 3.121 it holds generally that Z* is empty, since in 
l7 -+ Z, ,Z must contain only one formula, and that formula must be equal 
to m. 

It is now obvious that in every succedent of a sequent only such formulae 
occur as had already occurred in the succedent of a sequent of the original 
derivation. 
3.232.2. In  the cases 3.122 it is somewhat more difficult to see that from an 
LJ-derivation we always get another LJ-derivation. We must direct our 
attention, as was done in our earlier consideration of dual cases, to the 
antecedents in the schemata 3.121. 

3.232.21. The case which is dual to 3.121.1 is trivial, since in every antecedent 
of a sequent of a new derivation (in case 3.121.1) only such formulae occur 
as had already occurred in an antecedent of a sequent of the original derivation. 

At this point we distinguish two further subcases: 
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3.232.22. In the cases that are dual to 3.121.2, the mix in the end of the 
derivation runs: 

a + m  z-kn 
a, z* + n Y 

where 17 contains at most one S-formula, and where D + is the lower 
sequent of an LJ-inference figure in which at least one upper sequent 
contains 9Jl as a succedent formula. 

If we now look at the inference figure schemata 1.21, 1.22, it becomes 
easily apparent that such an inference figure can only be a thinning, con- 
traction, or interchange in the antecedent, or a v-IA, a &-ZA, a +ZA, 
a V-IA, and a 3-ZA. Let us disregard for the moment the v-IA and the 
1-U. Then all the possibilities enumerated above fall within the case dual 
to 3.121.22, where both Y and Z always remain empty. (r corresponds 
to the 0 of the inference figure.) Thus we have the case which is dual to 
3.121.221. Furthermore, r is equal to '%, i.e., r* is empty, and n contains 
at most one formula. Hence in the new derivation there never in fact occurs 
more than one formula in the succedent of a sequent. 

The case of a v-IA is dual to 3.121.231. Again, r is equal to '557, I'* is 
empty, and 17 contains at most one formula; all is thus in order. 

There now remains the case of a x- IA ,  i.e., 3.122.1. In an LJ- 3 4 4 ,  
the 0 of the schema (1.22) is empty. Thus we have the case set out under 
3.122.12. A* is also empty, and n contains at most one formula, which 
means that here, too, we again obtain an LJ-derivation from an LJ-deriva- 
tion. 

SECTION IV. SOME APPLICATIONS OF THE HAUPTSATZ 

9 1. Applications of the Hauptsatz in propositional logic 

1.1. A trivial consequence of the Hauptsatz is the already known con- 
sistency of classical (and intuitionist) predicate logic (cf., e.g., D. Hilbert 
and W. Ackermann, Grundziige der theoretischen Logik (Berlin, 1928, 
1st  edition), p. 65): the sequent + (which is derivable from every contra- 
dictory sequent + % & '%, cf. 3.21) cannot be the lower sequent of any 
inference figure other than of a cut and is therefore not derivable. 
1.2. Solution of the decision problem for intuitionist propositional logic. 

On the basis of the Hauptsatz we can state a simple procedure for deciding 
of a formula of propositional logic - i.e., a formula without object variables - 
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whether or not it is classically or intuitionistically true. (For classical 
propositional logic a simple solution has actually been known for some 
time, cf., e.g., p. 11 of Hilbert-Ackermann.) 

First we prove the following lemma: 
A sequent in whose antecedent one and the same formula does not occur 

more than three times as an S-formula, and in whose succedent, furthermore, 
one and the same formula occurs no more than three times as an S-formula, 
will be called a ‘reduced sequent’. The following lemma now holds: 

1.21. Every LJ- or LK-derivation whose endsequent is reduced, may be 
transformed into an LJ- or LK-derivation with the same endsequent, 
in which all sequents are reduced (and in which no cuts occur if the original 
derivation did not contain any). 

PROOF OF THIS LEMMA: If we eliminate from the antecedent of a sequent, 
in any places whatever (possibly none), all S-formulae occurring more 
than once, and if we do the same independently in the succedent, so that 
eventually these formulae occur only once, twice, or three times, we obtain 
a sequent that will be called a ‘reduction instance of the given sequent’. 

From a reduction instance of a sequent we may obviously derive all other 
reduction instances of the same sequent by means of thinnings, contractions, 
and interchanges such that in the course of these operations only reduced 
sequents occur. 

After these preliminary remarks we now transform the LJ- or LK- 
derivation at hand in the following way: 

All basic sequents as well as the endsequent are left intact; they are already 
reduced sequents. 

The D-sequents which belong to an inference figure are transformed into 
reduction instances of these sequents in a way about to be indicated. By 
virtue of our preliminary remark it does not matter if a sequent belonging 
to two different D-inference figures is in each case replaced by a diferent 
reduction instance, since one sequent is derived very simply from the other 
by thinnings, contractions, and interchanges so that eventually another 
complete derivation results. (The same holds for a sequent whch, while 
belonging to an inference figure, is also a basi,c sequent or an endsequent, 
since it is of course a reduction instance of itself.) 

The transformations of the inference figures are now carried out in the 
following way: 

If a formula occurs more than once within r, it is eliminated from r, 
both from the upper sequents and the lower sequent, as many times (from 
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the appropriate places) as is necessary to ensure that finally it occurs in 
r no more than once. The same procedure is used for A ,  0, and A (i-e., 
those sequences of formulae that are designated by these letters in the 
schema 111.1.21 and 1.22, of the inference figure concerned). 

Having carried out the transformations described, we have now a deriva- 
tion consisting only of reduced sequents. (An interchange where %I is 
identical with B may form an exception, yet this figure would be an identical 
inference figure and could have been avoided.) 

The lemma is thus proved. 
Given the Hauptsatz, together with corollary 111. 2.513, and the preceding 

lemma (1.21), it now holds that: 
1.22. For every correctly reduced sequent, both intuitionist and classical, 
there exists an LJ- or LK-derivation resp. without cuts consisting only of 
reduced sequents, and whose D-S-formulae are subformulae of the S- 
formula of that sequent. 
1.23. Consider now a sequent not containing an object variable. We wish 
to decide whether or not it is intuitionistically or classically true. We can 
begin by taking in its place an equivalent reduced sequent 6q. 

The number of all reduced sequents whose S-formulae are subformulae 
of the S-formulae of Gq is obviously finite. The decision procedure may 
therefore be carried out without further complications in the following way: 

We consider the finite system of sequents in question and investigate 
first of all, which of these sequents are basic sequents. Then we examine 
each of the remaining sequents to determine whether there occurs an 
inference figure in which the sequent in question is the lower sequent and in 
which there occur as upper sequents one or two of those sequents that have 
already been found to be derivable. If this is the case, the sequent is added 
to the derivable sequents. (All this is obviously decidable.) We continue in 
this way until either the sequent Gq itself turns out to be derivable, or until 
the procedure yields no new derivable sequents. In the latter case the sequent 
Gq (by virtue of 1.22) is not derivable at all in the calculus under considera- 
tion (LJ or LK). We have therefore succeeded in establishing the validity of 
that sequent. 
1.3. A new proof of the nonderivability of the law of the excluded middle 
in intuitionist logic. 

Our decision procedure could have been formulated in a way better suited 
to the needs of practical application; yet the above presentation (1.2) was 
intended only to indicate a possibility in principle. 

As an example, we shall prove the nonderivability of the law of the 
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excluded middle in intuitionist logic by a method independent of the decision 
procedure described (although this procedure would have to yield the same 
result). (This nonderivability has already been proved by HeytingZ4 in a 
completely different way.) 

A .  Suppose there exists 
an LJ-derivation for it. According to the Hauptsatz there then exists sucb a 
derivation without cuts. Its lowest inference figure must be a v-IS, for in 
all other LJ-inference figures either the antecedent of the lower sequent is 
not empty, or a formula occurs in the succedent whose terminal symbol 
is not v; there might still be the case of a thinning in the succedent, but the 
upper sequent would then be a +, which, by virtue of 1.1, is not derivable. 

Hence either + A or + 1 A would have to be already derivable 
(without cuts). 

(From the same considerations, incidentally, it follows in general: 
If ‘% v B is an intuitionistically true formula, then either % or B is an 
intuitionistically true formula. In classical logic this does not hold, as the 
example of A v 

Now + A cannot be the lower sequent of any LJ-inference figure whatever 
(if it is not a cut), unless that figure is another thinning with -+ for its 
upper sequent. Furthermore, since + A is not a basic sequent, it is thus not 
derivable. 

A is derivable only from A + 

by a T-ZS figure, and A + is in turn derivable only from A, A +, since A 
contains no terminal symbol. Continuing in this way, we always reach only 
sequents of the type A ,  A ,  . . . , A +, but never a basic sequent. 

The sequent in question is of the form + A v 

A already shows.) 

The same considerations show that + 

Hence A v 1 A is not derivable in intuitionist predicate logic. 

0 2. A sharpened form of the Hauptsatz for classical predicate logic 

2.1. w e  are here concerned with the following SHARPENING OF THE HAUPTSATZ: 
Suppose that we have an LK-derivation whose endsequent is of the 

following kind: 
Each S-formula of this sequent contains V and hymbols at most at the 

beginning, and their scope extends over the whole of the remaining formula. 
In that case, the given derivation may be transformed into an LK-deriva- 

tion with the same endsequent and having the following properties: 
1. It contains no cuts. 
2. It contains a D-sequent, let us call it the ‘midsequent’, which is such 

that its derivation (and hence the midsequent itself) contains no V and 



$2,  A SHARPENED FORM OF THE Hauptsatz FOR CLASSICAL PREDICATE LOGIC 107 

hymbols, and where the only inference figures occurring in the remaining 
part of the derivation, the midsequent included, are V-IS, V-IA, 3-IS, 3-IA, 
and structural inference figures. 
2.11. The midsequent divides the derivation, as it were, into an upper part 
beolnging to propositional logic, and a lower part containing only V and 
3introductions. 

Concerning the form of the transformed derivation, the following may 
still be readily concluded: The lower part, from the midsequent to the 
endsequent, belongs to only one path since only inference figures with one 
upper sequent occur in it. The S-formulae of the midsequent are of the 
following kind: 

Every S-formula in the antecedent of the midsequent results from an 
S-formula in the antecedent of the endsequent by the elimination of the V 
and 3-symbols (together with the bound object variables beside them), 
and by the replacement of the bound object variables in the rest of the 
formula by certain free object variables. The same procedure is followed 
in the case of succedents. 

2.2. PROOF OF THE THEOREM (2.1)? 

2.21. We begin by applying the Hauptsatz (111.2.5): The derivation may 
accordingly be transformed into a derivation without cuts. 
2.22. Transformation of basic sequents containing a V- or 3-symbol: 

By virtue of the properties of subformulae 111.2.513, such sequents can 
only have the form VF & --+ V z  3s or 3z 3~ + 3g SF.  They are trans- 
formed into (suppose a to be a free object variable not yet occurring in the 
derivation): 

This follows from the same consideration as in 111.2.512. 

The transformation of the derivation is carried out in several steps. 

By repeating this procedure sufficiently often we can obviously eliminate 
all V- and 3-symbols from every basic sequent of the derivation. 
2.23. We now perform a complete induction on the ‘order’ of the derivation, 
which is defined as follows: 

Of the operational inference figures we call those belonging to the symbols 
&, v, l, and 13 ‘propositional inference figures’, and the rest, i.e., V-IS, 
V-IA, ]-IS, 3-IA, ‘predicate inference figures’. To each predicate inference 
figure in the derivation we assign the following ordinal number: 
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We consider that path of the derivation that extends from the lower sequent 
of the inference figure up to the endsequent of the derivation (including the 
endsequent) and count the number of lower sequents of the propositional 
inference figures occurring in it. Their number is the ordinal number. 

The sum of the ordinal numbers of all predicate inference figures in the 
derivation is the order of the derivation. 

We intend to reduce that order step by step until it becomes zero. 
Note that once this has been achieved the rest of the proof of the theorem 

(2.1) is easily carried out: (The steps involved (2.232) will be such as to 
preserve the properties that were established in 2.21 and 2.22.) 
2.231. In order to do so we assume that the derivation has already been 
reduced to order zero. From the endsequent we now proceed to the upper 
sequent of the inference figure above it. We stop as soon as we encounter 
the lower sequent of a propositional inference figure or a basic sequent; 
that sequent we call Gq. (It will serve us as ‘midsequent’, once it has been 
transformed in a way about to be indicated.) 

The derivation of 6q is now transformed as follows: 
We simply omit all D-S-formulae which still contain the symbols V and 

3. The above derivation remains correct after the described operation 
since, by virtue of 2.22, its basic sequents are not affected. Furthermore, 
no principal or side formula of an inference figure has been eliminated, 
for if such a formula had contained a symbol V or 3, the principal formula 
would certainly have contained that symbol. But no predicate inference 
figures occur (if they did, the ordinal number of the inference figure would 
be greater than zero), and by virtue of the subformula property (111.2.513) 
and the hypothesis of theorem 2.1, the principal formulae of the proposi- 
tional inference figures cannot contain a V or 3. Now every inference figure 
remains correct if we eliminate, wherever it occurs as an S-formula in the 
figure, a formula which occurs neither as a principal nor as a side formula. 
This is easily seen from the schemata 111.1.21 and 111.1.22. (At worst, an 
identical inference figure may result, which is then eliminated in the usual 
manner.) 

The sequent Gq*, which has resulted from Gq by this transformation, 
differs from Gq in that certain S-formulae may possibly have been elimi- 
nated. We follow the transformation up with several thinnings and inter- 
changes such that in the end the sequent Gq reappears, and to it we attach 
the unaltered lower part of the derivation. 

We have now reached our goal: Gq* is the ‘midsequent’, and it obviously 
satisfies all conditions imposed on the latter by theorem (2.1). 
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2.232. It now remains for us to carry out the induction step of our proof, 
i.e., the order of the derivation is assumed to be greater than zero, and 
our task is to diminish it. 
2.232.1. We begin by redesignating the free object variables in the same way 
as in 111.3.10. As a result of this, the derivation has the following property 
(111.3.101): 

For every V-IS (or 1-44 )  it holds that the eigenvariable in the derivation 
occurs only in the sequent above the lower sequent of the V-IS (or 3-IA) 
and does furthermore not occur in any other V-IS or 3-IA as an eigen- 
variable. 

The order of the derivation is hereby obviously left unchanged. 
2.232.2. We now come to the transformation proper. 

To begin with, we observe that in the derivation there occurs a predicate 
inference figure - let us call it Sfl - with the following property: If we 
follow that path of the inference figure which extends from the lower 
sequent to the endsequent, then the first lower sequent of an operational 
inference figure reached is the lower sequent of a propositional inference 
figure (that inference figure we call 8f2). If there were no such instance, the 
order of the derivation would be equal to zero. 

Now our aim is to slide the inference figure Sfl lower down in the deriva- 
tion beyond 8f2. This is easily done by means of the following schemata: 
2.232.21. Suppose that Sf2 has one upper sequent. 
2.232.211. Suppose that Sfl is a V-IS. Then that part of the derivation on 
which the operation is to be carried out runs as follows: 

r+  @,%a V-IS 

8f2, possibly preceded by structural inference figures. 
+ 0 , V Z S E  

A + A  

This we transform into: 

r + 0, Sa 

A + Sa, A 

possibly several interchanges, as well as a thinning 

possibly preceded by structural inference figures 
3% Vb ?& inference figures of exactly the same kind as above, i.e., 3f2, 

possibly several interchanges 
A + 4 S a  V-IS 
A + A,  vx Sb 

possibly several interchanges and contractions. 
A + A  

The elimination of V &  3 g  by contraction in the last step of the trans- 
formation is made possible by the fact that in A,  Vg 8~ must occur as an 
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S-formula. (For the S-formula VF 3~ could not, in the original derivation, 
have been eliminated from the succedent by means of 9 f2  and the preceding 
structural inference figures, since it can obviously not be a side formula of 
3f2, by virtue of the subformula property 111.2.513 and the hypothesis of 
theorem 2.1 .) 

The restriction on variables is satisfied by the above V-IS (9fl) by virtue 
of 2.232.1. 

The order of the derivation has obviously been diminished by 1. 
2.232.212. The case where 9fl is a 3-IS is dealt with analogously; all we 
need do is to replace V by 3. 
2.232.213. The cases where 3fl is a V-IA or 3-IA are treated dually to 
the two preceding cases. 
2.232.22. The case where 9 f2  has two upper sequents, i.e., &-IS, v-IA, or 
I-IA, can be dealt with quite correspondingly. At most a number of 
additional structural inference figures may be required. 
2.3. Analogously to theorem 2.1 there are several ways in which the Haupt- 
satz may be further strengthened in the sense that certain restrictions can be 
placed on the order of occurrence of the operational inference figures in 
a derivation. For we can permute the inference figures to a large extent by 
sliding them above and beyond each other as was done above (2.232.2). 

We shall not pursue this question further. 

6 3. Application of the sharpened Hauptsatz (2.1) to a newz6 consistency 
proof for arithmetic without complete induction 

By arithmetic we mean the (elementary, i.e., employing no analytic 
techniques) theory of the natural numbers. Arithmetic may be formalized 
by means of our logical calculus LK in the following way: 
3.1. In arithmetic it is cubtomary to employ ‘functions’, e.g., x’ (equals 
x +  I), x+y ,  x * y. Since we have not introduced function symbols into our 
logical formalism, we shall, in order to be able to apply it to arithmetic 
nevertheless, formalize the propositions of arithmetic in such a way that 
predicates take the place of functions. In place of the function x’,  for 
example, we shall use the predicate xPry, which reads: x is the predecessor 
of y ,  i.e., y = x+ 1 .  Furthermore, [x+y = z ]  will be considered a predicate 
with three argument places. Thus the symbols + and = have here no 
independent meaning. A different predicate is x = y ;  the equality symbol 
here has thus no formal connection at all with the equality symbol in the 
previous predicate. 
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The number 1, furthermore, will not be written as a symbol for a definite 
object, since we have only object variables in our logical formalism and no 
symbols for definite objects. We shall overcome this difficulty by saying that 
the predicate ‘One means informally the same as ‘x is the number 1’. 

The sentence ‘x+ 1 is the successor of for example, could be rendered 
thus in our formalism: 

All other natural numbers can be respresented by the predicates 
One x & xPry; One x & xPry & yPrz, etc. 

How are we now to integrate into our calculus the predicate symbols just 
introduced, having admitted only propositional variables? To do so we 
simply stipulate that the predicate symbols are to be treated in exactly the 
same way as propositional variables. More precisely: We regard expressions 
of the form 

One F 7  FPr97 F = 9 7  (F+9 = a), 
where any object variables stand for E ,  9, g, merely as more easily intelligible 
ways of writing the formulae 

In this sense the axiom formulae that follow are indeed formulae in accor- 
dance with our definition. 

(We cannot, of course, regard the number 1 as a way of writing an object 
variable, since in our calculus the object variables really function as variables, 
which is not so in the case of propositional variables.) 

As ‘axiom formulae’ of our arithmetic we shall initially take the following, 
and shall later, once the consistency proof has been carried out (cf. 3.3), 
statq general criteria for the formation of further admissible axiom formulae: 

Equality : 
vx (x = x) (reflexivity) 

VxVyVz((x = y & y  = z) 3 x  = 2) 

3x (One x) 
VxVy  ((One x & Oney) 3 x = y) 

VxVy(x = y 3 y = x) (symmetry) 
(transitivity) 

(existence of 1) 
(uniqueness of 1) 

One: 

Predecessor: 
Vx 3y (xPry) (existence of successor) 
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Vx Vy (xpry 3 One y) (1 has no predecessor) 
Vx Vy Vz Vu ((xpry & zPru & x = z) 3 y = u) (uniqueness of successor) 
Vx Vy Vz Vu ((xPry & zPru & y = u)  3 x = u) (uniqueness of predecessor). 

A formula 23 is called derivable in arithmetic without complete induction, 
if there is an LK-derivation for a sequent 

al, . . . y a# + 23 

in which gl, . . . Up are axiom formulae of arithmetic. 
The fact that this formal system does actually allow us to represent the 

types of proof customary in informal arithmetic (as long as they do not use 
complete induction) cannot be proved, since for considerations of an in- 
formal character no precisely delimited framework exists. We can merely 
verify this in the case of individual informal proofs by testing them. 
3.2. We shall now prove the consistency of the formal system just presented. 
With the help of the sharpened Hauptsatz (2.1) our task is in fact quite 
simple. 
3.21. A ‘contradiction’ & 1 % is derivable in our system if and only if 
there exists an LK-derivation for a sequent with an empty succedent and 
with arithmetic axiom formulae in the antecedent, viz.: 

From r + % & % we obtain r + in the following way: 

7 - I A  % + %  

&-IA 
interchange 

contraction 

cut. 

&-IA 

r+  
The converse is obtained by carrying out a thinning in the succedent. 
Thus, if our arithmetic is inconsistent, there exists an LK-derivation 

with the endsequent 
a1 Y * - - 9 ap +, 

where . . . %p are arithmetic axiom formulae. 
3.22. We now apply the sharpened Hauptsatz (2.1). The arithmetic axiom 
formulae fulfil the requirement laid down for the S-formulae of the end- 
sequent. Hence there exists an LK-derivation with the same endsequent 
which has the following properties: 
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1. It contains no cuts. 
2. It contains a D-sequent. the ‘midsequent’, whose derivation contains 

no V and 3-symbols, and whose endsequent results from a number of 
inference figures V-IA, 3 4 A ,  thinnings, contractions and interchanges in 
the antecedent. The midsequent has an empty succedent (2.11). 
3.23. We then proceed to redesignate the free object variables as in 111.3.10. 
All mentioned properties remain unchanged, and the following property 
is added (111.3.101): The eigenvariable of each 3-IA in the derivation occurs 
only in sequents above the lower sequent of the 3-IA. 
3.24. Then we replace every occurrence of a free object variable by one and 
the same natural number in a way to be described presently. In doing so 
we are left with a figure which we can no longer call an LK-derivation. 
We shall see later to what extent it nevertheless has an informal sense. 

The replacement of the free object variables by numbers is carried out 
in the following order: 
3.241. First we replace all free object variables which do not occur as the 
eigenvariable of a 3-IA by the number 1 throughout. (We could also take 
another number.) 
3.242. Then we take every 3-IA inference figure in the derivation, beginning 
with the lowest and taking each figure in turn, and replace each eigenvariable 
(wherever it occurs in the ‘derivation’) by a number. That number is deter- 
mined as follows: 

The 3-IA can only run: 

One a, r + 0 vPra, r -+ 0 
or 

3x  One x ,  r --+ 0 3y vPry, + 0 

(by virtue of the subformula property 111.2.513; v can be only a number, 
by virtue of 3.241 and 3.23). In the first case we replace a by 1, in the second 
case by the number that is one greater than v .  
3.25. Now we examine the figure which has resulted from the derivation. 
We are particularly interested in what the (former) midsequent now looks 
like. We can say this about it: 

Its succedent is empty, and each of the antecedent S-formulae either has 
the form One 1 or vPrv’, where a number stands for v ,  and where a number 
one greater than the previous one stands for v ’ ;  or it results from an arith- 
metic axiom formula that has only V-symbols at the beginning, by the 
elimination of the V-symbols (and the bound object variables next to them) 
and the substitution of numbers for the bound object variables in the 
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remaining part of the formula. (All this follows from the same consideration 
as in 111.2.512, also cf. 2.11.) 

Thus, the S-formulae in the antecedent of the midsequent represent 
informally true numerical propositions. It further holds for the ‘derivation’ 
of the midsequent that it has resulted from a derivation containing no 
V- or 3-symbols, by having all its occurrences of free object variables 
replaced by numbers. Informally, such a ‘derivation’ constitutes in effect a 
proof in arithmetic using only forms of inference from propositional logic. 

This leads us to the following result: 
If our arithmetic is inconsistent, we can derive a contradiction from true 

numerical propositions through the mere application of inferences from 
propositional logic. 

Here ‘true numerical propositions’ are propositions of the form One 1, 
vPrv’, as well as all numerical special cases of general propositions occurring 
among the axioms such as, e.g., 3 = 3, 4 = 5 3 5 = 4, 3Pr4 3 1 One 4. 

It is almost self-evident that from such propositions no contradictions 
are derivable by means of propositional logic. A proof for this would hardly 
be more than a formal paraphrasing of an informally clear situation of fact. 
Such a proof will therefore not be carried out save for indicating briefly 
the customary procedure for it: 

We determine generally for which numerical values the formulae 
One p, p = v, pPrv, p+v = p, etc., are true and for which values they are 
false; furthermore, we explain in the customary way (cf., e.g., Hilbert- 
Ackermann p. 3) the truth or falsity of 8 & 58, 8 v 23, 1 a, and 3 23, 
as functions of the truth or falsity of the subformulae; we then show that all 
numerical special cases of axiom formulae are ‘true’; and finally, that 
inference figures of propositional logic always lead from true formulae 
to other true formulae. A contradiction, however, is not a true formula. 
3.3. It is easy to see from the remarks made in 3.25 in what way the system 
of arithmetic axiom formulae may be extended without making a contra- 
diction derivable in it: Quite generally, we can allow the introduction of 
axiom formulae that begin with V-symbols spanning the whole formula, 
which do not contain any 3-syrnbols, and of which every numerical special 
case is informally true. (We could also admit certain formulae containing 
hymbols,  as long as they can be dealt with in the consistency proof in a 
way analogous to that of the two cases occurring above.) 

E.g., the following axiom formulae for addition are admissible: 

VxVy (xpry =I [x+I  = y1) 
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V X V ~ V Z V U V U  ((.Pry & [ z+x  = u ]  & [z+y = u ] )  =) upru) 

v x  vy  v z  v u  (( [ x+y  = z ]  & [x+y = u ] )  =) z = u) 

v x v y v z  ( [ x + y  = z ]  3 [ y + x  = z l )  

etc. 

3.4. Arithmetic without complete induction is, however, of little practical 
significance, since complete induction is constantly required in number 
theory. Yet the consistency of arithmetic with complete induction has not 
been conclusively proved to date. 

SECTION V. THE EQUIVALENCE OF THE NEW CALCULI NJ, NK, 
AND LJ, L K  WITH A CALCULUS MODELLED ON THE 

FORMALISM OF HILBERT 

5 1. The concept of equivalence 

1.1. We shall introduce the following concept of equivalence between 
formulae and sequents (which is in harmony with what was said in 1.1.1 
and 1.2.4, concerning the informal sense of the symbol A and of sequents: 

Identical formulae are equivalent. 
Identical sequents are equivalent. 
Two formulae are equivalent if the replacement of every occurrence of the 

A yields the other formula. 
The sequents Z1,. . . , aP + Bl, . . . , Bv is equivalent to the following 

If the 2l’s and B’s are not empty: 

symbol A in one of them by the formula A & 

formula: 

(al & . . . & aP) 3 (Bv v . . . v B1); 

(this version is more convenient for the equivalence proof than that with 
Bl v . . . v Bv); if the a’s are empty, but the %’s are not: 

Bv v . .  . v ,823,; 

(al & . . . & ap) 3 ( A  & 1 A ) ;  

if the 23’s are empty, but the a’s are not: 

if the Ws and the 8’s are empty: 

A & T A .  

The equivalence is transitive. 
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1.2. (We could of course give a substantially wider definition of equivalence, 
e.g., two formulae are usually called equivalent if one is derivable from the 
other. Here we shall content ourselves with the particular definition given, 
which is adequate for our proofs of equivalence.) 

Two derivations will be called equivalent if the endformula (endsequent) 
of one is equivalent to that of the other. 

Two calculi will be called equivalent if every derivation in one calculus 
can be transformed into an equivalent derivation in the other calculus. 

In 0 2 of this section we shall present a calculus (LHJ for intuitionist, 
LHK for classical predicate logic) modelled on Hilbert's formalism. In the 
remaining paragraphs of this section we shall then demonstrate the equiv- 
alence of the calculi LHJ, NJ, and L J  ($0 3-5) as well as the equivalence of 
the calculi LHK, NK, and LK (0 6) in the sense just explained. We shall thus 
successively prove the following: 

Every LHJ-derivation can be transformed into an equivalent NJ-deriva- 
tion (8 3); every NJ-derivation can lye transformed into an equivalent 
LJ-derivation (0 4); and every LJ-derivation can be transformed into an 
equivalent LHJ-derivation (0 5) .  This obviously proves the equivalence of all 
three calculi. The three classical calculi are dealt with analogously in 0 6 
(6.1-6.3). 

6 2. A logistic calculus according to Hilbert2' and Glivenko28 

We shall begin by explaining the intuitionist form of the calculus: 
An LHJ-derivation consists of formulae arranged in tree form, where 

the initial formulae are basic formulae. 
The basic formulae and the inference figures are obtained from the 

following schemata by the same rule of replacement as in 11.2.21, i.e.: 
For %, '23, B, put any arbitrary formula; for V X  & or 3~ '& put any arbitrary 
formula with V or 3 for its terminal symbol, where x designates the associated 
bound object variable; for g a  put that formula which results from by 
the replacement of every occurrence of the bound object variable by the 
free object variable a. 

2.11. cu: 3 cu: 
2.12. 

2.13. (% 3 (a 23)) =I (3 3 %) 
2.14. 

Schemata for basic formulae: 

9i 3 (23 3 9i) 

(a 3 ('23 3 G)) 3 (23 3 ((ZI 3 G)) 
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2.15. 

2.21. 

2.22. 

2.23. 

2.31. 

2.32. 

2.33. 

2.41. 

2.42. 

2.51. 

2.52. 

((21 3 23) 3 ((23 3 G) = (a = G)) 
(a&B)  3% 

((21&23) 3 23 
((21 =J 23) 3 (((21 3 G) 3 ((21 3 (8 & 6))) 
%=, (%V%)  

B = ((21vB) 

(a 3 G) 3 ((23 3 G) = (((21v 23) = G)) 
(% = 23) = (((21 3 123)  = 1 a) 
(7 a) = ((21 3 B) 
V . s i ? z  3 a  
3a  = 3 z  3.s. 

(Several of the schemata are dispensable, but independence does not 

Schemata for inference figures: 
concern us here.) 

a ( 2 1 3 %  a33a Ba 3 (21 

B (21 = V z %  ( 3 E W  3%. 

Restriction on variables: In the inference figures obtained from the last 
two schemata, the object variable, designated by a in the schema, must not 
occur in the lower formula (hence not in and 3:~) .  

(The calculus LHJ is essentially equivalent to that of Heyting”.) 
By including the basic formula schema v 7 (21, the calculus LHK 

(This latter calculus is essentially equivalent to the calculus presented in 
(classical predicate calculus) results. 

Hilbert-Ackermann, p. 53.) 

8 3. Transformation of an LHJ-derivation into an equivalent NJ-derivation 

From an LHJ-derivation (V.2) we obtain an NJ-derivation (11.2) with 
the same endformula by transforming the LHJ-derivation in the following 
way: (In this transformation all D-formulae of this derivation will reappear 
as D-formulae of the NJ-derivation, and they will not depend on any assump- 
tion formula. Included further will be other D-formulae dependent on 
assumption formulae.) 
3.1. The LHJ-basic formulae are replaced by NJ-derivations according to 
the following schemata: 
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(2.11) 

(2.13) 

(2.14) 

(2.15) 

1 
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1 

(a =) (23 36)) =) (23 3 (a 3 6)) 

1 3  

(2.12) 

1 

&-E 

2.22, 2.31, 2.32, 2.51 and 2.52 are dealt with analogously to 2.21. 

1 3  1 2  
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1 4  1 3 

3 - E  ' 3 - E  2 a a = %  (2.33) 

V-E 1 
% V B  Q Q 

rr 

1 3  1 2  

3 - E  % a3123 3 - E  
% %I23 

(2.41) 
23 1 B  

A 
~ 1-11 
1% 

(a 3 123) = 7 a 
(a = 23) = ((a 3 1 23) 3 1 a) 

=-I, 

3 - I 3  

1 2  
(2.42) a l a  

7 - E  
A 

3-11 

(1 a) = (a =) 93) 

B 
a323 

=-I,. 

3.2. The LHJ-inferenceJigures are replaced by sections of an NJ-derivation 
according to the following schemata: 

remains as it is, since it has already the form of a 3 - E .  
%a323  

23 

1 
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The restriction on variables for V-I and 3-E is satisfied, as is easily seen, 
by virtue of the restriction on variables existing for LHJ-inference figures. 

This completes the transformation of an LHJ-derivation into an equiv- 
alent NJ-derivation. 

5 4. Transformation of an NJ-derivation into an equivalent LJ-derivation 

4.1. We proceed as follows: First we replace every D-formula of the NJ- 
derivation by the following sequent (cf. 111.1.1): In  its succedent only the 
formula itself occurs; in its antecedent occur the assumption formulae upon 
which the sequent depended, and they occur in the same order from left 
to right as they did in the NJ-derivation. (It is presumably clear what is 
meant by the order from left to right of the initial formulae of a figure in 
tree form.) 

We then replace every occurrence of the symbol A by A & 1 A.  (The 
formula resulting from A in this way will be designated by A*.)  
4.2. We thus already have a system of sequents in tree form. The antecedent 
of the endsequent is empty (11.2.2); it is obviously equivalent to the end- 
sequent of the NJ-derivation. The initial sequents a11 have the form %* --* %* 
(11.2.2) and are thus already basic sequents of an LJ-derivation. 

The figures formed from NJ-inferencefigures are transformed into sections 
of an LJ-derivation according to the following schemata: 
4.21. The inference figures v-I, V-I, and 3-1 have become LJ-inference 
figures as a result of the substitution performed. (In the case of a V-I, 
the LJ-restriction on variables is satisfied by virtue of the NJ-restriction on 
variables.) 
4.22. A &-I became: 

r+8*  A + @ *  
r , A + a * & B T '  

This is transformed into: 
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r + a* possibly several inter- 
r, A + a* changes and contractions r, A + B* 

r, A + %* & B* 

A + B* possibly several 
thinnings 
&-IS. 

4.23. A =-I became: 

r l ,  %*, r 2 , .  . . ,%*, rp  + B* 
r l ,  r 2 , .  . . , rp  + %* 3 B* * 

This we transform into: 

r l  9 %*? r2  9 * - * 9 a*, r~ + B* possibly several interchanges and 
contractions, sometimes a thinning a*, r,, r,, . . . , r, + B* I” 

- D - l A .  - -  __ 
r1 , r2 , .  . . ,rp -+ a* 3 B* 

4.24. The same procedure applies to a l - I .  Finally, we still have to consider 
the figure 

First we derive A & A -+ in the calculus LJ as follows: 

7 - I A  

&-IA 

A + A  

i A , A +  
A & i A , A +  
A , A & - I A +  

A & i  A , A & T A +  

A & 7 A - +  

interchange 

contraction. 

&-IA 

By including this sequent, the figure in question is transformed as follows: 

% * , r + A & 7 A  A & T A +  
cut 

1 - I S .  
8*, r + 

r+7a* 
A 

5D 
4.25. By substitution (4.1) the NJ-inference figure - became: 

This is transformed into: 
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T - t A & T A  A & i A +  
cut r +  

r + a* thinning. 

The derivation for A & 
written above that sequent. 
4.26. A V-E became: 

A +, as presented in 4.24, should here still be 

r + vx ~ * x  
r+S*a ' 

This is transformed into: 

4.27. The same method is used for &-E. 
4.28. A 2-E became: 

r+%* A + % *  3 B *  
r, A + B* 

This is transformed into: 

A,r+ B* 
r , A + B *  

possibly several interchanges. 

4.29. A --E became: 

This is transformed into: 

1 - I A  
r + %* 

A + T % *  ,%*,r-t 
- cut 

A,r+ 
possibly several interchanges 

thinning. 
r, A -+ 

r, A -+ A & 7 A 
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4.2.10. v-E. Both right-hand upper sequents are followed up, as in the case 
of a 3- I  and 7-1 (4.23) above, by interchanges, contractions, and thinnings 
(wherever necessary) so that in each case the result is a sequent in whose 
antecedent occurs a formula of the form %* or B* at the beginning (whereas 
the original assumption formulae involved have been absorbed into the rest 
of the antecedent). Then follows: 

possibly several thinnings B*, A Q* possiblyseveralthinnings 

23*, r, A -+ 0. 

--t 

* and interchanges 
V-IA 

* and interchanges %*, r, A -, Q 
E -, %* v 23* %* v %*, r, A -, Q* cut. 

4.2.11. A 3-E is treated quite similarly: First we move S* a in the right-hand 
upper sequent to the beginning of the antecedent (cf. 4.23); then follows: 

E,  r, A -+ Q* 

b,r -, Q* 

The LJ-restriction on variables for 3-IA is satisfied by virtue of the NJ- 

This completes the transformation of an NJ-derivation into an equivalent 
restriction on variables for 3-E. 

LJ-derivation. 

§ 5. Transformation of an LJ-derivation into an equivalent LHJ-derivation 

This transformation is a little more difficult than the two previous ones. 
We shall carry it out in a number of separate steps. 

Preliminary remark: Contractions and interchanges in the succedent do 
not occur in the calculus LJ, since they require the occurrence of at least 
two S-formulae in the succedent. 
5.1. We first introduce new basic sequents in place of the figures &-IA, 
v-IS, V-IA, %IS, -,-IA, and I-IA; these are to be formed according to 
the following schemata (rule of replacement as in 111.1.2 - the same rule 
will always apply below; in addition to the letters 8, 23, By and 6 we shall 
also, incidentally, use the letters, 6, $, and 3): 

2351: M & B + %  2332: % & 2 3 + 2 3  
2333: %+Mv23 2334: 23+Mv23 
2355: VF 3~ -, %a 23G6: Sa -+ 3~ 3~ 
2357: 1 M, M -+ 2358: M 3 23, % -+ 23. 
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Thus in the LJ-derivation to be considered, we transform the inference 

A &-IA becomes : 
figures concerned in the following way: 

2331 
a&%-+% a , r + o  cut. 

imB, r+o  

The other form of the &-IA is transformed correspondingly, so is every 

v-IS and 3-1s are dealt with symmetrically. 
A 7-IA becomes: 

&-IA. 

2337 

+ interchange 

cut r + 8  aY l8+  
r,-a+ 

lix,r+ 
possibly several interchanges. 

(The 0 in the schema of - 1 4 4  (111.1.22) must be empty by virtue of the 
LJ-restrictions on succedents; the same holds for the 5 I A . )  

A z-ZA becomes: 

B38 

” + interchange 
8 8 , 8 3 b + B c u t  

cut rY8=%-+8 2 3 , A + A  
r, 8 3 By A + A 

possibly several 
8 3  23, r, A + A 

interchanges. 

5.2. We now write the formula A & A in the succedent of all D-formulae 
whose succedent is empty. 

In doing so the basic sequents of the form 5B + 9, as well as 2331 to 
2336 and 2338, also the figures &-IS, V-IS, and =-IS, remain unchanged. 
The other basic sequents and inference figures are transformed into new 
basic sequents and inference figures according to the following schemata: 

2339: a, 7 a + @  
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(For 3f7 the reexists the following restriction on variables: The free object 
variable designated by a must not occur in the lower sequent.) 
5.3. The inference figure 3f4 is now replaceable by other figures as follows 
(this is mainly due to our having kept general the form of the schema 93359): 

B62 

3f5 BS9 r - + a 1 A  A & ~ A - + ~ A  

3f5 
r - + T A  i A , A - + %  %Sl 
r , A - + %  

possibly several 
A,  r -+ B af5 

3 f 5  
T + A & l A  A & i A - + A  

T + A  
r , r+% 

1-39 
possibly several and 

In a similar way we replace the inference figure 3f8 (wherever it occurs 
in the derivation), only this time we use a new inference figure according 
to the following schema: 

I - , % + A  r , % - + l A  
3f9 : 

r - + T A  

We substitute as follows (in place of Sf8): 

23351 m 2  

3f5 
% , ~ - + A & ~ A  A & ~ A - + ~ A  

% , r - + i A  

I- ,%-+ A r , % - + T A  

3 f 5  

~ + ~ s ! i  

Q , ~ - + A & ~ A  A & ~ A - + A  

8 , r - A  
possibly several possibly several 3f3’s 

3j9.  

5.4. Now we still introduce two new inferenceJigures schemata, viz.: 
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and its converse: 

The two types of inference figures are introduced into the derivation in 
order to enable us to replace a number of other inference figures by more 
specialized ones (in 5.42 and 5.43). 
5.41. To begin with, =‘-IS inference figures are now replaceable by means 
of 3 f l O :  

A =-IS is transformed into: 

- 1 -  - -J “-I---- 

”=. ,-. 

5.42. The inference figures 3f1, 3f2, 3f3, 3f5, Sf6, and 3f7 are then trans- 
formed in the following way: 

As an example we take an 3f2, which is transformed into the followdg 
figure (suppose r equals S1, . . . , 3,): 

3f10 

several 

Sf13 

several 

Sf lo’s 

3fll’s. 

We proceed quite analogously with all other figures mentioned, i.e., 
using 8 f l O  and Sfll, we replace them by inference figures according to 
these schemata: 

(For 3f17 there exists a restriction on variables: The free object variable 
designated by a must not occur in the lower sequent.) 
5.43. In a similar way we also replace the inference figures 3f9, 3f13, and 
3f14 by the following (using 8 f l O  and 3fll): 



5 5, TRANSFORMATION OF AN LJ-DERIVATION 127 

+ sb 3 (5D 3 0.) 
3f19: 

r - - + % = ~  r + % D I A  

A + sb 3 (0: 3 0.) 
fl + E 3 (sb D 0.) * 

8f18: r j 7 %  j s b 3 G  

8f20 : 

The basic sequents 2338 and 2339 may be replaced in the same way by: 
% 3 23 + % 3 23, this form falls under the schema sb + 3; as well as 

23310: 1 % + ill 3 @. 
5.5. Now comes theJinal step: 

Every D-sequent 
%I , . . . , %@ + 23 

is replaced by the formula 
(If the Ws are empty, we mean 23. An empty succedent no longer occurs, 

according to 5.2.) 
All basic sequents (viz. sb + 9, 2331 to 2336, 23310) are thus transformed 

into LHJ-basic sequents. 
OF the inference figures, V-IS and 3f17 are also transformed into LHJ- 

inference figures. (V-ZS, however, forms an exception if r is empty. In that 
case we first derive (in the LHJ-calculus) ( A  3 A )  3 Sa from Sa by means 
of 2.12, and by then applying the LHJ-inference figure, we finally obtain 
VF 3s once again by means of 2.11.) 

The figures obtained from the remaining inference figures (which are 
&-IS, Sflo, 11, 12, 15, 16, 18, 19, 20) by substitution, are turned into 
sections of an LHJ-derivation in the following way: 

& . . . & 3 23. 

An &-IS has become (suppose first that r is not empty): 

G 3 %  6 3 %  

This is transformed into: 

0.323 (0. 3 %) 3 (0. 3 (% & 23)) 
G 3(%&%) 

If r is empty, we proceed as in the case of V-ZS. 
The figures obtained from 8f12, 15, 16, and 19 by substitution are 

dealt with quite analogously using basic formulae according to the schemata 
2.12, 2.15, 2.33, and 2.13. 
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In a similar way 3f18 and 3f20 are dealt with by means of 2.41 and 2.14 
and by the application of 2.15 and 2.14, 2.13. 

The only figures now left are those having resulted from 8 f l O  and8f11. 
Both are trivial for an empty T, hence suppose that r is not empty. In that 
case we transform these figures into sections of LHJ-derivations as follows: 

(3flO): From (Q & %) 13 B we have to derive 0. 3 (a 3 23). Now 2.23 
together with 2.11 yields: (Q 3 %) 3 (0: 3 (0. & a)). This together with 
(0. & 8) 3 23 and 2.15, 2.14 yields (0. 3 %) 2 (0. 13 %), and from this 
formula together with 2.12, 2.15 yields % 13 (0. 3 B), and by 2.14 
0. 13 (a 3 '3) results. 

(3fll): From B 13 (3 13 23) we derive (Q & a) 13 B in the LHJ-calculus 
as follows: 2.21 and 2.22 yield (6 & a) 3 Q and (6 & %) 13 %; and from 
this together with Q 3 (% 3 Ti), we obtain (0. & a) 13 23 (by using 2.15, 
2.14, 2.15, 2.13). 

This completes the transformation of the LJ-derivation into an LHJ- 
derivation. Furthermore, the two derivations really are equivalent, since the 
endsequent of the LJ-derivation was affected only by the transformations 
5.2 and 5.5, and has thus obviously been transformed into a formula 
equivalent with it (according to 1.1). 

If the results of $0 3-5 are taken together, the equivalence of the three 
calculi LHJ, NJ, and L J  is now fully proved. 

4 6. The equivalence of the calculi LHR, NK, and LK 

Now that the equivalence of the different intuitionist calculi has been 
proved, it is fairly easy to deduce that of the classical calculi. 
6.1. In order to transform an LHK-derivation into an equivalent NK- 
derivation we proceed exactly as in 0 3. The additional basic formulae 
according to the schema % v 1 % remain unchanged, and are thus at once 
basic formulae of the NK-derivation. 
6.2. In order to transform an NK-derivation into an equivalent LK-deriva- 
tion we proceed initially as in 0 4. In this way the additional basic formulae 
according to the schema v % are transformed into sequents of the 
form -+ %* & 7 %*. These we then replace by their LK-derivations 
(according to 111.1.4). The transformation of an NK-derivation into an 
equivalent LK-derivation is thus complete. 
6.3. Transformation of an LK-derivation into an LHK-derivation. 

following respect: 
We introduce an auxiliary calculus differing from the LK-calculus in the 
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Inference figures may be formed according to the schemata 111.1.21, 
111.1.22, but with the following restrictions: Contractions and interchanges 
in the succedent are not permissible; in the remaining schemata no substitu- 
tion may be performed on 0 and A ;  these places thus remain empty. 

Furthermore, the following two schemata for inference figures are added 
(rule of replacement as usual: 111.1.2): 

and its converse: 

(Thus, here 0 need not be empty.) 
6.31. Transformation of an LK-derivation into a derivation of the auxiliary 
calculus: 

(The procedure is similar to that in 5.4.) 
All inference figures, with the exception of contractions and interchanges 

in the succedent, are transformed according to the following rule: The 
upper sequents are followed by inference figures Sfl, until all formulae of 
0 or A have been negated and brought into the antecedent (to the right of 
r or A ) .  Then follows an inference figure of the same kind as the one just 
transformed, which is now actually a permissible inference figure in the 
auxiliary calculus. (The formulae that have been brought into the antecedent 
are treated as part of r or d.)  Then follow 3f2 inference figures, and 0 
and A are thus brought back into the succedent. (In the case of the =-ZA 
and the cut, we may first have to carry out interchanges in the antecedent, 
but these are also permissible inference figures in the auxiliary calculus.) 

Now we still have to consider contractions - or interchanges - in the 
succedent. Here, as in the previous case. the whole succedent is negated and 
brought forward into the antecedent. We then carry out interchanges, a 
contraction, and further interchanges - or one interchange - in the antece- 
dent, and then the negated formulae are brought back into the succedent 
(bq means of the inference figures Sf2). 
6.32. Transformation of a derivation of the auxiliary calculus into a deriva- 
tion of the calculus L J  augmented by the inclusion of the basic sequent 
schema -, v a: 

We begin by transforming all D-sequents as follows: 

%I 3 . . . , afl --+ '231 , . . . , '23" becomes 
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U1, . . . , + '23" v . . . v Bl . If the succedent was empty, it remains empty. 

Now all basic sequents or inference figures of the auxiliary calculus with 
the exception of the figures Sfl and Sf2, have thus already become basic 
sequents or inference figures of the calculus LJ. This is so since these 
inference figures have resulted from the schemata 111.1.21 , 111.1.22 (with the 
exception of the schemata for contraction and interchange in the succedent) 
by 0 and A always having remained empty. At most one formula could 
therefore occur in the succedent. 

Hence we still have to transform the figures which have resulted from the 
inference figures 3fl and 3 f2  in the course of the above modification. 
6.321. First Sfl: If 0 is empty, we replace the inference figure by a l-L4, 
followed by interchanges in the antecedent. Suppose, therefore, that 0 is 
not empty, where O* designates the formulae belonging to 0, in reverse 
order and connected by v. 

After the transformation of the succedents, the inference figure in that 
case rum as follows: 

r - + o * v 8  

r, 8-  o* 

This is transformed into the following section of an LJ-derivation: 

% + %  
o* + o* 1%,8-+ 

%,7%+ 

8, 7 8 + o* 

thinning 

interchange 
1 %, o* + o* 
o*, 1 8  -+ o* 

r, 8 -+ o* 
o* V%, 7 8 + o* 

cut. ~ .--_I.._- 
r + o * v 8  

1 - I A  
interchange 

thinning 

V-IA 

6.322. After the transformation of its succedents, an inference figure 3f2 
runs as follows: 

r, 4 x - +  o* 
r + o * V &  

where @* has the same meaning as in the previous case. If 0 is empty, 
assume @* to be empty too, and let @* v 8 mean 8. 

It is transformed into the following section of a derivation: 
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* %possibly several thin- r, % * @*possibly several 
nings and interchanges * interchanges la,r-,o 

v-IS v-IS 

V-IA 

%,r-+% 
%,r -+ @ * v %  %, r -, o* v % 

cut. 
-,%v-l% % V  %, r -, o*vt?i 

r-,o*v% 
It is easy to see that in the case of an empty 0 all is in order. 

6.33. The LJ-derivation now obtained, together with the additional basic 
sequents of the form + 8 v 1 %, may be transformed, as in 0 5, into an 
LHJ-derivation with the inclusion of additional basic formulae of the form 
% v 1 % (cf. 5.5), i.e., into an LHK-derivation. This completes the trans- 
formation of the LK-derivation into an LHK-derivation. At the same time, 
the endsequent has been transformed (in accordance with 6.32,5.2, and 5.5) 
into an equivalent formula (according to 1.1). 

By combining the results of 6.1, 6.2, and 6.3, we have now also proved 
the equivalence of the three classical calculi of predicate logic: LHK, NK, 
and LK. 
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